These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 6841372)

  • 21. Potential-biased, asymmetric waveforms for charge-injection with activated iridium oxide (AIROF) neural stimulation electrodes.
    Cogan SF; Troyk PR; Ehrlich J; Plante TD; Detlefsen DE
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):327-32. PubMed ID: 16485762
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation of capacitor's electrode from cassava peel waste.
    Ismanto AE; Wang S; Soetaredjo FE; Ismadji S
    Bioresour Technol; 2010 May; 101(10):3534-40. PubMed ID: 20093010
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of neural damage induced by electrical stimulation with faradaic and capacitor electrodes.
    McCreery DB; Agnew WF; Yuen TG; Bullara LA
    Ann Biomed Eng; 1988; 16(5):463-81. PubMed ID: 3189974
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increase of the roughness of the stainless-steel anode surface due to the exposure to high-voltage electric pulses as revealed by atomic force microscopy.
    Saulis G; Rodaite-Riseviciene R; Snitka V
    Bioelectrochemistry; 2007 May; 70(2):519-23. PubMed ID: 17289442
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcranial electric stimulation for intraoperative motor evoked potential monitoring: Stimulation parameters and electrode montages.
    Szelényi A; Kothbauer KF; Deletis V
    Clin Neurophysiol; 2007 Jul; 118(7):1586-95. PubMed ID: 17507288
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of electrode roughness on the capacitive behavior of self-assembled monolayers.
    Douglass EF; Driscoll PF; Liu D; Burnham NA; Lambert CR; McGimpsey WG
    Anal Chem; 2008 Oct; 80(20):7670-7. PubMed ID: 18811215
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation.
    Cogan SF; Guzelian AA; Agnew WF; Yuen TG; McCreery DB
    J Neurosci Methods; 2004 Aug; 137(2):141-50. PubMed ID: 15262054
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of electrode material, charge density and stimulation duration on the safety of high-frequency stimulation of the subthalamic nucleus in rats.
    Harnack D; Winter C; Meissner W; Reum T; Kupsch A; Morgenstern R
    J Neurosci Methods; 2004 Sep; 138(1-2):207-16. PubMed ID: 15325129
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transretinal electrical stimulation with a suprachoroidal multichannel electrode in rabbit eyes.
    Sakaguchi H; Fujikado T; Fang X; Kanda H; Osanai M; Nakauchi K; Ikuno Y; Kamei M; Yagi T; Nishimura S; Ohji M; Yagi T; Tano Y
    Jpn J Ophthalmol; 2004; 48(3):256-61. PubMed ID: 15175918
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface composition and electrical and electrochemical properties of freshly deposited and acid-etched indium tin oxide electrodes.
    Brumbach M; Veneman PA; Marrikar FS; Schulmeyer T; Simmonds A; Xia W; Lee P; Armstrong NR
    Langmuir; 2007 Oct; 23(22):11089-99. PubMed ID: 17880253
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Scanning electrochemical microscopy in combination with piezoelectric quartz crystal impedance analysis for studying the growth and electrochemistry as well as microetching of poly(o-phenylenediamine) thin films.
    Tu X; Xie Q; Xiang C; Zhang Y; Yao S
    J Phys Chem B; 2005 Mar; 109(9):4053-63. PubMed ID: 16851463
    [TBL] [Abstract][Full Text] [Related]  

  • 32. X-ray Induced Electric Currents in Anodized Ta
    Brivio D; Gagne M; Freund E; Sajo E; Zygmanski P
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676161
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of electrolyte composition on the in vitro charge-injection limits of activated iridium oxide (AIROF) stimulation electrodes.
    Cogan SF; Troyk PR; Ehrlich J; Gasbarro CM; Plante TD
    J Neural Eng; 2007 Jun; 4(2):79-86. PubMed ID: 17409482
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Removal of a hydrogenated amorphous carbon film from the tip of a micropipette electrode using direct current corona discharge.
    Kakuta N; Okuyama N; Yamada Y
    Rev Sci Instrum; 2010 Feb; 81(2):025103. PubMed ID: 20192514
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Theoretical study of rectangular pulse electrical stimulation (RPES) onskin cells (in vivo) under conforming electrodes.
    Cheng K; Tarjan PP; Mertz PM
    Biomed Sci Instrum; 1993; 29():349-54. PubMed ID: 8329612
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single-walled carbon nanotubes deposited on surface electrodes to improve interface impedance.
    Gabriel G; Gómez-Martínez R; Villa R
    Physiol Meas; 2008 Jun; 29(6):S203-12. PubMed ID: 18544808
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of an extraocular retinal prosthesis: evaluation of stimulation parameters in the cat.
    Chowdhury V; Morley JW; Coroneo MT
    J Clin Neurosci; 2008 Aug; 15(8):900-6. PubMed ID: 18586497
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs.
    Majji AB; Humayun MS; Weiland JD; Suzuki S; D'Anna SA; de Juan E
    Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2073-81. PubMed ID: 10440263
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrodeposited iridium oxide for neural stimulation and recording electrodes.
    Meyer RD; Cogan SF; Nguyen TH; Rauh RD
    IEEE Trans Neural Syst Rehabil Eng; 2001 Mar; 9(1):2-11. PubMed ID: 11482359
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Characteristics of impedance properties of metal bioelectrodes].
    Tukshaitov RKh; Garifullin RL
    Biull Eksp Biol Med; 1979 May; 87(5):494-6. PubMed ID: 454835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.