BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 6841463)

  • 1. Effect of topically administered epinephrine, norepinephrine, and acetylcholine on cerebrocortical circulation and the NAD/NADH redox state.
    Dóra E; Kovách AG
    J Cereb Blood Flow Metab; 1983 Jun; 3(2):161-9. PubMed ID: 6841463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of acute arterial hypo- and hypertension on cerebrocortical NAD/NADH redox state and vascular volume.
    Dóra E; Kovách AG
    J Cereb Blood Flow Metab; 1982; 2(2):209-19. PubMed ID: 7076733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further studies on reflectometric monitoring of cerebrocortical microcirculation. Importance of lactate anions in coupling between cerebral blood flow and metabolism.
    Dóra E
    Acta Physiol Hung; 1985; 66(2):199-211. PubMed ID: 4050463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of proxyphylline and benzopyrones on the cerebrocortical NAD/NADH redox state and reflectance in haemorrhagic shock.
    Dora E; Kovách AG
    Arzneimittelforschung; 1978; 28(5):787-90. PubMed ID: 219868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determinants of brain activation-induced cortical NAD/NADH responses in vivo.
    Dóra E; Gyulai L; Kovách AG
    Brain Res; 1984 May; 299(1):61-72. PubMed ID: 6326966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of adenosine and its stabile analogue 2-chloroadenosine on cerebrocortical microcirculation and NAD/NADH redox state.
    Dóra E
    Pflugers Arch; 1985 Jul; 404(3):208-13. PubMed ID: 4034367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple cranial window technique for optical monitoring of cerebrocortical microcirculation and NAD/NADH redox state. Effect of mitochondrial electron transport inhibitors and anoxic anoxia.
    Dóra E
    J Neurochem; 1984 Jan; 42(1):101-8. PubMed ID: 6689684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of the adrenergic beta receptor blocker propranolol on the dilatation of cerebrocortical vessels evoked by arterial hypoxia.
    Dóra E; Kovách AG
    Acta Physiol Hung; 1984; 63(1):35-41. PubMed ID: 6331065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of topical adenosine deaminase treatment on the functional hyperemic and hypoxic responses of cerebrocortical microcirculation.
    Dóra E; Koller A; Kovách AG
    J Cereb Blood Flow Metab; 1984 Sep; 4(3):447-57. PubMed ID: 6470059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular oxygen tension and energy metabolism in the cat brain cortex during haemorrhagic shock.
    Kovách AG; Dóra E
    Acta Physiol Acad Sci Hung; 1979; 54(4):333-46. PubMed ID: 232967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycolysis and epilepsy-induced changes in cerebrocortical NAD/NADH redox state.
    Dóra E
    J Neurochem; 1983 Dec; 41(6):1774-7. PubMed ID: 6644311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of surplus amount of oxygen on the cerebrocortical microcirculatory reactions associated to moderate arterial hypotension.
    Dóra E; Urbanics R
    Acta Physiol Hung; 1986; 67(2):213-21. PubMed ID: 3739745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactivity of the cerebrocortical vasculature and energy metabolism to direct cortical stimulation in haemorrhagic shock.
    Dóra E; Kovách AG
    Acta Physiol Acad Sci Hung; 1979; 54(4):347-61. PubMed ID: 232968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of arterial hypoxia on the cerebrocortical redox state, vascular volume, oxygen tension, electrical activity and potassium ion concentration.
    Dóra E; Zeuthen T; Silver IA; Chance B; Kovách AG
    Acta Physiol Acad Sci Hung; 1979; 54(4):319-31. PubMed ID: 232966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of microcirculatory, NAD/NADH, and electrocorticographic changes in cat brain cortex during ischemia and recirculation.
    Dora E; Tanaka K; Greenberg JH; Gonatas NH; Reivich M
    Ann Neurol; 1986 Jun; 19(6):536-44. PubMed ID: 3729309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADH fluorescence in vivo: changes in cerebral oxidative metabolism and perfusion induced by pentobarbital, indomethacin, and salicylate.
    Nowicki JP; Jourdain D; MacKenzie ET
    J Cereb Blood Flow Metab; 1987 Jun; 7(3):280-8. PubMed ID: 3584263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of hypoxia and hyperoxia on cortical oxidative metabolism in relation to cerebral blood flow autoregulation].
    Taguchi Y; Austin GM
    No To Shinkei; 1986 Feb; 38(2):177-85. PubMed ID: 3964489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shock-induced cytoplasmic NADH fluorescence changes in the living cat brain cortex: effect of dexamethasone.
    Dóra E; Sátori O; Szabó L; Kovách AG
    Acta Physiol Acad Sci Hung; 1980; 56(2):219-33. PubMed ID: 7257841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of acetazolamide on cerebrocortical NADH and blood volume.
    Bickler PE; Litt L; Severinghaus JW
    J Appl Physiol (1985); 1988 Jul; 65(1):428-33. PubMed ID: 3136135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient metabolic and vascular volume changes following rapid blood pressure alterations which precede the autoregulatory vasodilation of cerebrocortical vessels.
    Kovách AG; Dóra E; Hamar J; Eke A; Szabó L
    Adv Exp Med Biol; 1977 Jul 4-7; 94():705-11. PubMed ID: 207169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.