These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 6842403)

  • 1. Kainic acid selectively stimulates the release of endogenous excitatory acidic amino acids.
    Ferkany JW; Coyle JT
    J Pharmacol Exp Ther; 1983 May; 225(2):399-406. PubMed ID: 6842403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kainic acid evoked release of D-[3H]aspartate from rat striatum in vitro: characterization and pharmacological modulation.
    Notman H; Whitney R; Jhamandas K
    Can J Physiol Pharmacol; 1984 Sep; 62(9):1070-7. PubMed ID: 6498619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitotoxic mechanisms of epileptic brain damage.
    Olney JW; Collins RC; Sloviter RS
    Adv Neurol; 1986; 44():857-77. PubMed ID: 3706027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. L-2-chloropropionic acid inhibits glutamate and aspartate release from rat cerebellar slices but does not activate cerebellar NMDA receptors: implications for L-2-chloropropionic acid-induced neurotoxicity.
    Widdowson PS; Briggs I; BoSmith RE; Sturgess NC; Rosbottom A; Smith JC; Wyatt I
    Neurotoxicology; 1997; 18(1):169-77. PubMed ID: 9215999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal origins of K(+)-evoked amino acid release from cerebellar cultures.
    Simmons ML; Dutton GR
    J Neurosci Res; 1992 Apr; 31(4):646-53. PubMed ID: 1349652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isodomoic acids A and C exhibit low KA receptor affinity and reduced in vitro potency relative to domoic acid in region CA1 of rat hippocampus.
    Sawant PM; Weare BA; Holland PT; Selwood AI; King KL; Mikulski CM; Doucette GJ; Mountfort DO; Kerr DS
    Toxicon; 2007 Oct; 50(5):627-38. PubMed ID: 17640694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of glutamic acid, kainic acid and aspartic acid on GABA release from rat retina degenerated by kainic acid.
    Kamada Y; Mizuno A; Miyazaki H; Tsuneoka H; Matsuda M
    Jpn J Ophthalmol; 1984; 28(1):57-61. PubMed ID: 6146735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of adenosine receptors in the regulation of kainic acid-induced neurotoxic responses in mice.
    Lee HK; Choi SS; Han KJ; Han EJ; Suh HW
    Brain Res Mol Brain Res; 2004 Jun; 125(1-2):76-85. PubMed ID: 15193424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kainate receptor agonists and antagonists mediate tolerance to kainic acid and reduce high-affinity GTPase activity in young, but not aged, rat hippocampus.
    Hesp BR; Wrightson T; Mullaney I; Kerr DS
    J Neurochem; 2004 Jul; 90(1):70-9. PubMed ID: 15198668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of nicotinic acetylcholine receptors in the regulation of kainic acid-induced hippocampal cell death in mice.
    Lee HK; Choi SS; Han EJ; Lee JY; Kwon MS; Shim EJ; Seo YJ; Suh HW
    Brain Res Bull; 2004 Dec; 64(4):309-17. PubMed ID: 15561465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upregulation of Calbindin-D-28k immunoreactivity by excitatory amino acids.
    Batini C; Guegan M; Palestini M; Thomasset M; Vigot R
    Arch Ital Biol; 1997 Sep; 135(4):385-97. PubMed ID: 9270899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-term effects of kainic acid on CA1 hippocampal interneurons differentially vulnerable to excitotoxicity.
    Sanon N; Carmant L; Emond M; Congar P; Lacaille JC
    Epilepsia; 2005 Jun; 46(6):837-48. PubMed ID: 15946325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of glutamate transporter and receptor ligands on neuronal glutamate uptake.
    Boeck CR; Kroth EH; Bronzatto MJ; Jardim FM; Souza DO; Vendite D
    Neurosci Res; 2005 Sep; 53(1):77-83. PubMed ID: 16011854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presynaptic kainate receptor facilitation of glutamate release involves protein kinase A in the rat hippocampus.
    Rodríguez-Moreno A; Sihra TS
    J Physiol; 2004 Jun; 557(Pt 3):733-45. PubMed ID: 15107475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurotoxic action of kainic acid in the isolated toad and goldfish retina: II. Mechanism of action.
    Kleinschmidt J; Zucker CL; Yazulla S
    J Comp Neurol; 1986 Dec; 254(2):196-208. PubMed ID: 3098808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical consequences of kainic acid injection into the lateral brain ventricle in rat.
    Kleinrok Z; Turski L
    Acta Biochim Pol; 1981; 28(2):111-22. PubMed ID: 6119862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kainic acid and 3-Nitropropionic acid induced expression of laminin in vascular elements of the rat brain.
    Sarkar S; Schmued L
    Brain Res; 2010 Sep; 1352():239-47. PubMed ID: 20624377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct actions of endogenous excitatory amino acids on the outflow of dopamine in the nucleus accumbens.
    Youngren KD; Daly DA; Moghaddam B
    J Pharmacol Exp Ther; 1993 Jan; 264(1):289-93. PubMed ID: 8093728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of glutamate efflux by excitatory amino acid receptors: evidence for tonic inhibitory and phasic excitatory regulation.
    Liu J; Moghaddam B
    J Pharmacol Exp Ther; 1995 Sep; 274(3):1209-15. PubMed ID: 7562490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GABAB receptors in the medial septum/diagonal band slice from 16-25 day rat.
    Henderson Z; Jones GA
    Neuroscience; 2005; 132(3):789-800. PubMed ID: 15837139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.