These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 6842623)
1. Dose effects of morphine on the spontaneous unit activity recorded from the thalamus, hypothalamus, septum, hippocampus, reticular formation, central gray, and caudate nucleus. Dafny N; Burks TF; Bergmann F J Neurosci Res; 1983; 9(2):115-26. PubMed ID: 6842623 [TBL] [Abstract][Full Text] [Related]
2. Effects of morphine on sensory-evoked responses recorded from central gray, reticular formation, thalamus, hypothalamus, limbic system, basal ganglia, dorsal raphe, locus ceruleus, and pineal body. Dafny N; Marchand J; McClung R; Salamy J; Sands S; Wachtendorf H; Burks TF J Neurosci Res; 1980; 5(5):399-412. PubMed ID: 7441794 [TBL] [Abstract][Full Text] [Related]
3. Characterization of unit activity recorded from septum, thalamus, and caudate following incremental opiate treatment. Dafny N; Rigor BM J Neurosci Res; 1980; 5(2):117-27. PubMed ID: 7401192 [TBL] [Abstract][Full Text] [Related]
4. Neurophysiological evidence for tolerance and dependence on opiates: simultaneous multiunit recordings from septum, thalamus, and caudate nucleus. Dafny N J Neurosci Res; 1980; 5(4):339-49. PubMed ID: 7191906 [TBL] [Abstract][Full Text] [Related]
5. Patterns of unit responses to incremental doses of morphine in central gray, reticular formation, medial thalamus, caudate nucleus, hypothalamus, septum and hippocampus in unanesthetized rats. Dafny N; Brown M; Burks TF; Rigor BM Neuropharmacology; 1979 May; 18(5):489-95. PubMed ID: 460545 [No Abstract] [Full Text] [Related]
6. Neurophysiological assessment of site specific effects of chronic morphine administration in freely behaving rats. McClung RE; Burks TF; Dafny N Arch Int Pharmacodyn Ther; 1977 Sep; 229(1):144-56. PubMed ID: 337915 [TBL] [Abstract][Full Text] [Related]
7. Microiontophoretically applied morphine and naloxone on single cell activity in the parafasciculus nucleus of naive and morphine-dependent rats. Reyes-Vazquez C; Dafny N J Pharmacol Exp Ther; 1984 May; 229(2):583-8. PubMed ID: 6325669 [TBL] [Abstract][Full Text] [Related]
8. Morphine and methionine-enkephalin: different effects on spontaneous and evoked neuronal firing in the mesencephalic reticular formation of the rat. Hosford DA; Haigler HJ J Pharmacol Exp Ther; 1980 May; 213(2):355-63. PubMed ID: 7365695 [TBL] [Abstract][Full Text] [Related]
9. Evidence for the involvement of the caudal region of the periaqueductal gray in a subset of morphine-induced alterations of immune status. Lysle DT; Hoffman KE; Dykstra LA J Pharmacol Exp Ther; 1996 Jun; 277(3):1533-40. PubMed ID: 8667220 [TBL] [Abstract][Full Text] [Related]
10. [Effect of lithium chloride on bioelectric activity of the cortex and various subcortical structures of rabbit brain]. Saratikov AS; Alekseeva LP Farmakol Toksikol; 1976; 39(3):271-5. PubMed ID: 1026507 [TBL] [Abstract][Full Text] [Related]
11. Neural segregation of Fos-protein distribution in the brain following freezing and escape behaviors induced by injections of either glutamate or NMDA into the dorsal periaqueductal gray of rats. Ferreira-Netto C; Borelli KG; Brandão ML Brain Res; 2005 Jan; 1031(2):151-63. PubMed ID: 15649440 [TBL] [Abstract][Full Text] [Related]
12. Tolerance development to the biphasic effects of morphine on locomotor activity and brain acetylcholine in the rat. Vasko MR; Domino EF J Pharmacol Exp Ther; 1978 Dec; 207(3):848-58. PubMed ID: 731435 [TBL] [Abstract][Full Text] [Related]
13. Sensory-evoked potentials recordings from the ventral tegmental area, nucleus accumbens, prefrontal cortex, and caudate nucleus and locomotor activity are modulated in dose-response characteristics by methylphenidate. Yang PB; Swann AC; Dafny N Brain Res; 2006 Feb; 1073-1074():164-74. PubMed ID: 16473326 [TBL] [Abstract][Full Text] [Related]
14. Amino acid incorporation during morphine intoxication. I: Dose and time effects of morphine on protein synthesis in specific regions of the rat brain and in astroglia-enriched primary cultures. Rönnbäck L; Hansson E J Neurosci Res; 1985; 14(4):461-77. PubMed ID: 4078941 [TBL] [Abstract][Full Text] [Related]
15. [Effect of opioid peptides, morphine and electroacupuncture on the neuronal activity of the sensorimotor cortex and brain stem reticular formation]. Iasnetsov VV; Pravdivtsev VA Biull Eksp Biol Med; 1982 Dec; 94(12):53-6. PubMed ID: 7150768 [TBL] [Abstract][Full Text] [Related]
16. [The influence of sex hormones on the bioelectric activity of the cortex and hypothalamo-reticulo-limbic structures of the brain]. Malyshenko NM Fiziol Zh SSSR Im I M Sechenova; 1975 Apr; 61(4):488-501. PubMed ID: 1213173 [TBL] [Abstract][Full Text] [Related]
17. Chronic halothane modification of eeg-like activity recorded from somatosensory cortex and deep nuclei in freely behaving rats. Reilly EL; Fuller GN; Wiggins RC; Rigor BM; Dafny N Neurotoxicology; 1981 Jan; 2(1):83-90. PubMed ID: 15622727 [TBL] [Abstract][Full Text] [Related]
18. Morphine action at central nervous system sites in rat: analgesia or hyperalgesia depending on site and dose. Jacquet YF; Lajtha A Science; 1973 Nov; 182(4111):490-2. PubMed ID: 4582903 [TBL] [Abstract][Full Text] [Related]
19. [The effect of etimizol on the excitability and spontaneous super-slow activity of the structures of the rabbit brain]. Borodkin IuS; Lapina IA Zh Vyssh Nerv Deiat Im I P Pavlova; 1975; 25(1):179-84. PubMed ID: 1210669 [TBL] [Abstract][Full Text] [Related]
20. Morphine acute effects on spontaneous multiunit activity recorded simultaneously from medial thalamus and caudate nucleus in freely behaving rats. Dafny N; Brown M; Rigor BM; Burks TF Neurol Res; 1979; 1(1):77-85. PubMed ID: 576059 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]