These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
81 related articles for article (PubMed ID: 6843514)
1. Temperature distributions in hyperthermia by electromagnetic induction: a theoretical model for the thorax. Brezovich IA; Young JH; Wang MT Med Phys; 1983; 10(1):57-65. PubMed ID: 6843514 [TBL] [Abstract][Full Text] [Related]
2. Theoretical temperature distributions for solenoidal-type hyperthermia systems. Strohbehn JW Med Phys; 1982; 9(5):673-82. PubMed ID: 7155068 [TBL] [Abstract][Full Text] [Related]
3. Magnetic induction heating of tissue: numerical evaluation of tumor temperature distributions. Halac S; Roemer RB; Oleson JR; Cetas TC Int J Radiat Oncol Biol Phys; 1983 Jun; 9(6):881-91. PubMed ID: 6863061 [TBL] [Abstract][Full Text] [Related]
4. Fundamental solutions to the bioheat equation and their application to magnetic fluid hyperthermia. Giordano MA; Gutierrez G; Rinaldi C Int J Hyperthermia; 2010; 26(5):475-84. PubMed ID: 20578812 [TBL] [Abstract][Full Text] [Related]
5. Transient solution to the bioheat equation and optimization for magnetic fluid hyperthermia treatment. Bagaria HG; Johnson DT Int J Hyperthermia; 2005 Feb; 21(1):57-75. PubMed ID: 15764351 [TBL] [Abstract][Full Text] [Related]
6. Theoretical temperature profiles for concentric coil induction heating devices in a two-dimensional, axi-asymmetric, inhomogeneous patient model. Paulsen KD; Strohbehn JW; Hill SC; Lynch DR; Kennedy FE Int J Radiat Oncol Biol Phys; 1984 Jul; 10(7):1095-107. PubMed ID: 6746351 [TBL] [Abstract][Full Text] [Related]
7. Numerical study of temperature distribution in a spherical tissue in magnetic fluid hyperthermia using lattice Boltzmann method. Lahonian M; Golneshan AA IEEE Trans Nanobioscience; 2011 Dec; 10(4):262-8. PubMed ID: 22271797 [TBL] [Abstract][Full Text] [Related]
8. Solution to the bioheat equation for hyperthermia with La(1-x)Ag(y)MnO(3-delta) nanoparticles: the effect of temperature autostabilization. Atsarkin VA; Levkin LV; Posvyanskiy VS; Melnikov OV; Markelova MN; Gorbenko OY; Kaul AR Int J Hyperthermia; 2009 May; 25(3):240-7. PubMed ID: 19437239 [TBL] [Abstract][Full Text] [Related]
9. Heat transfer mechanisms and thermal dosimetry. Bowman HF Natl Cancer Inst Monogr; 1982 Jun; 61():437-45. PubMed ID: 7177188 [TBL] [Abstract][Full Text] [Related]
10. Numerical analysis of local non-equilibrium heat transfer in layered spherical tissue during magnetic hyperthermia. Liu KC; Yang YC Comput Methods Biomech Biomed Engin; 2020 Oct; 23(13):968-980. PubMed ID: 32530754 [TBL] [Abstract][Full Text] [Related]
11. Temperature distribution in tissues subjected to local hyperthermia by RF induction heating. Hand JW; Ledda JL; Evans TS Br J Cancer Suppl; 1982 Mar; 5():31-5. PubMed ID: 6950769 [TBL] [Abstract][Full Text] [Related]
12. Theoretical temperature distributions produced by an annular phased array-type system in CT-based patient models. Paulsen KD; Strohbehn JW; Lynch DR Radiat Res; 1984 Dec; 100(3):536-52. PubMed ID: 6505143 [TBL] [Abstract][Full Text] [Related]
13. Experimental validation of an inverse heat transfer algorithm for optimizing hyperthermia treatments. Gayzik FS; Scott EP; Loulou T J Biomech Eng; 2006 Aug; 128(4):505-15. PubMed ID: 16813442 [TBL] [Abstract][Full Text] [Related]
14. The local tissue cooling coefficient: a unified approach to thermal washout and steady-state 'perfusion' calculations. Roemer RB Int J Hyperthermia; 1990; 6(2):421-30. PubMed ID: 2182747 [TBL] [Abstract][Full Text] [Related]
15. Comparative evaluation of hyperthermia heating modalities. I. Numerical analysis of thermal dosimetry bracketing cases. Roemer RB; Cetas TC; Oleson JR; Halac S; Matloubieh AY Radiat Res; 1984 Dec; 100(3):450-72. PubMed ID: 6505138 [TBL] [Abstract][Full Text] [Related]
16. Temperature distributions in tumor models heated by self-regulating nickel-copper alloy thermoseeds. Brezovich IA; Atkinson WJ; Chakraborty DP Med Phys; 1984; 11(2):145-52. PubMed ID: 6727789 [TBL] [Abstract][Full Text] [Related]
17. Power deposition patterns in magnetically-induced hyperthermia: a two-dimensional low-frequency numerical analysis. Hill SC; Christensen DA; Durney CH Int J Radiat Oncol Biol Phys; 1983 Jun; 9(6):893-904. PubMed ID: 6863062 [TBL] [Abstract][Full Text] [Related]
18. Improved preferential tumor hyperthermia with regional heating and systemic blood cooling: a balanced heat transfer method. Oleson JR; Babbs CF; Parks LC Radiat Res; 1984 Mar; 97(3):488-98. PubMed ID: 6729025 [TBL] [Abstract][Full Text] [Related]
19. Hyperthermia by magnetic induction: I. Physical characteristics of the technique. Oleson JR Int J Radiat Oncol Biol Phys; 1982 Oct; 8(10):1747-56. PubMed ID: 7153086 [No Abstract] [Full Text] [Related]
20. Bioheat transfer problem for one-dimensional spherical biological tissues. Kengne E; Lakhssassi A Math Biosci; 2015 Nov; 269():1-9. PubMed ID: 26327484 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]