These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 6843897)
1. Intrinsic connections in the medial amygdala as revealed by complete deafferentation. Nishizuka M; Arai Y Neurosci Lett; 1983 Mar; 35(3):247-51. PubMed ID: 6843897 [TBL] [Abstract][Full Text] [Related]
2. Male-female differences in the intra-amygdaloid input to the medial amygdala. Nishizuka M; Arai Y Exp Brain Res; 1983; 52(3):328-32. PubMed ID: 6653695 [TBL] [Abstract][Full Text] [Related]
3. Loss of dendritic synapses in the medial amygdala associated with kindling. Nishizuka M; Okada R; Seki K; Arai Y; Iizuka R Brain Res; 1991 Jun; 552(2):351-5. PubMed ID: 1913197 [TBL] [Abstract][Full Text] [Related]
4. Medial preoptic islands in the rat brain: electron microscopic evidence for intrinsic synapses. Nishizuka M; Pfaff DW Exp Brain Res; 1989; 77(2):295-301. PubMed ID: 2676575 [TBL] [Abstract][Full Text] [Related]
5. Synaptic reorganization in the medial amygdaloid nucleus after lesion of the accessory olfactory bulb of adult rat. II. New synapse formation in the medial amygdaloid nucleus by fibers from the bed nucleus of the stria terminalis. Ichikawa M Brain Res; 1987 Sep; 420(2):253-8. PubMed ID: 3499954 [TBL] [Abstract][Full Text] [Related]
6. Differential postsynaptic compartments in the laterocapsular division of the central nucleus of amygdala for afferents from the parabrachial nucleus and the basolateral nucleus in the rat. Dong YL; Fukazawa Y; Wang W; Kamasawa N; Shigemoto R J Comp Neurol; 2010 Dec; 518(23):4771-91. PubMed ID: 20963828 [TBL] [Abstract][Full Text] [Related]
7. Regional difference in sexually dimorphic synaptic organization of the medial amygdala. Nishizuka M; Arai Y Exp Brain Res; 1983; 49(3):462-5. PubMed ID: 6641844 [TBL] [Abstract][Full Text] [Related]
8. Synapse formation in response to estrogen in the medial amygdala developing in the eye. Nishizuka M; Arai Y Proc Natl Acad Sci U S A; 1982 Nov; 79(22):7024-6. PubMed ID: 6960361 [TBL] [Abstract][Full Text] [Related]
9. Synaptologic and fine structural features distinguishing a subset of basal forebrain cholinergic neurons embedded in the dense intrinsic fiber network of the caudal extended amygdala. Loopuijt LD; Zahm DS J Comp Neurol; 2006 Sep; 498(1):93-111. PubMed ID: 16933208 [TBL] [Abstract][Full Text] [Related]
10. Role of neural afferents as mediators of estrogen effects on the hypothalamic ventromedial nucleus. Sá SI; Pereira PA; Paula-Barbosa MM; Madeira MD Brain Res; 2010 Dec; 1366():60-70. PubMed ID: 20969836 [TBL] [Abstract][Full Text] [Related]
11. Neural associations of the substantia innominata in the rat: afferent connections. Grove EA J Comp Neurol; 1988 Nov; 277(3):315-46. PubMed ID: 2461972 [TBL] [Abstract][Full Text] [Related]
12. Connections of the amygdala of the rat. IV: Corticoamygdaloid and intraamygdaloid connections as studied with axonal transport of horseradish peroxidase. Ottersen OP J Comp Neurol; 1982 Feb; 205(1):30-48. PubMed ID: 7068948 [TBL] [Abstract][Full Text] [Related]
13. Afferent connections to the amygdaloid complex of the rat and cat: II. Afferents from the hypothalamus and the basal telencephalon. Ottersen OP J Comp Neurol; 1980 Nov; 194(1):267-89. PubMed ID: 7440798 [TBL] [Abstract][Full Text] [Related]
14. Reciprocal connections between the amygdala and parabrachial nuclei: ultrastructural demonstration by degeneration and axonal transport of horseradish peroxidase in the cat. Takeuchi Y; McLean JH; Hopkins DA Brain Res; 1982 May; 239(2):583-8. PubMed ID: 7093703 [TBL] [Abstract][Full Text] [Related]
15. Afferents from the auditory thalamus synapse on inhibitory interneurons in the lateral nucleus of the amygdala. Woodson W; Farb CR; Ledoux JE Synapse; 2000 Nov; 38(2):124-37. PubMed ID: 11018786 [TBL] [Abstract][Full Text] [Related]
16. Synaptology and origin of somatostatin fibers in the rat lateral septal area: convergent somatostatinergic and hippocampal inputs of somatospiny neurons. Jakab RL; Leranth C Brain Res; 1991 Nov; 565(1):123-34. PubMed ID: 1723020 [TBL] [Abstract][Full Text] [Related]
17. Amygdala input to medial prefrontal cortex (mPFC) in the rat: a light and electron microscope study. Bacon SJ; Headlam AJ; Gabbott PL; Smith AD Brain Res; 1996 May; 720(1-2):211-9. PubMed ID: 8782914 [TBL] [Abstract][Full Text] [Related]
18. Synapses on GABAergic neurons in the basolateral nucleus of the rat amygdala: double-labeling immunoelectron microscopy. Li R; Nishijo H; Ono T; Ohtani Y; Ohtani O Synapse; 2002 Jan; 43(1):42-50. PubMed ID: 11746732 [TBL] [Abstract][Full Text] [Related]
19. Relationship of Met-enkephalin-like immunoreactivity to vagal afferents and motor dendrites in the nucleus of the solitary tract: a light and electron microscopic dual labeling study. Velley L; Milner TA; Chan J; Morrison SF; Pickel VM Brain Res; 1991 Jun; 550(2):298-312. PubMed ID: 1715806 [TBL] [Abstract][Full Text] [Related]
20. Synaptic reorganization in the medial amygdaloid nucleus after lesion of the accessory olfactory bulb of adult rat. I. Quantitative and electron microscopic study of the recovery of synaptic density. Ichikawa M Brain Res; 1987 Sep; 420(2):243-52. PubMed ID: 3676759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]