These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 684604)

  • 1. Effect of duration of acute spinal cord compression in a new acute cord injury model in the rat.
    Rivlin AS; Tator CH
    Surg Neurol; 1978 Jul; 10(1):38-43. PubMed ID: 684604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clip compression model is useful for thoracic spinal cord injuries: histologic and functional correlates.
    Poon PC; Gupta D; Shoichet MS; Tator CH
    Spine (Phila Pa 1976); 2007 Dec; 32(25):2853-9. PubMed ID: 18246008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time direct measurement of spinal cord blood flow at the site of compression: relationship between blood flow recovery and motor deficiency in spinal cord injury.
    Hamamoto Y; Ogata T; Morino T; Hino M; Yamamoto H
    Spine (Phila Pa 1976); 2007 Aug; 32(18):1955-62. PubMed ID: 17700440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decompression of the spinal cord improves recovery after acute experimental spinal cord compression injury.
    Guha A; Tator CH; Endrenyi L; Piper I
    Paraplegia; 1987 Aug; 25(4):324-39. PubMed ID: 3627821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The treatment of hypotension due to acute experimental spinal cord compression injury.
    Dolan EJ; Tator CH
    Surg Neurol; 1980 May; 13(5):380-4. PubMed ID: 7385009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular basis of behavioral recovery following spinal cord decompression: an immunocytochemical study.
    Chen Q
    Chin Med J (Engl); 2000 Aug; 113(8):737-42. PubMed ID: 11776060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute phase effects of ATP-MgCl2 on experimental spinal cord injury.
    Cakir E; Baykal S; Karahan SC; Kuzeyli K; Uydu H
    Neurosurg Rev; 2003 Jan; 26(1):67-70. PubMed ID: 12520320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clip compression injury in the spinal cord: a correlative study of neurological and morphological alterations.
    von Euler M; Seiger A; Sundström E
    Exp Neurol; 1997 Jun; 145(2 Pt 1):502-10. PubMed ID: 9217086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compression of rat spinal cord in vitro: effects of ethanol on recovery of axonal conduction.
    Ridella SA; Anderson TE
    Cent Nerv Syst Trauma; 1986; 3(3):195-205. PubMed ID: 3802222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-level relationship for nitric oxide and the protective effects of aminoguanidine in experimental spinal cord injury.
    Soy O; Aslan O; Uzun H; Barut S; Iğdem AA; Belce A; Colak A
    Acta Neurochir (Wien); 2004 Dec; 146(12):1329-35; discussion 1335-6. PubMed ID: 15309585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal cord compression injury in adult rats initiates changes in dorsal horn remodeling that may correlate with development of neuropathic pain.
    Kalous A; Osborne PB; Keast JR
    J Comp Neurol; 2009 Apr; 513(6):668-84. PubMed ID: 19235905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new rat spinal cord injury model: a ventral compression technique.
    Benzel EC; Lancon JA; Thomas MM; Beal JA; Hoffpauir GM; Kesterson L
    J Spinal Disord; 1990 Dec; 3(4):334-8. PubMed ID: 2134447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Experimental study of acute spinal cord injury: a histopathological study].
    Kawata K; Morimoto T; Ohashi T; Tsujimoto S; Hoshida T; Tsunoda S; Sakaki T
    No Shinkei Geka; 1993 Jan; 21(1):45-51. PubMed ID: 8426687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of timing of decompression on neurologic recovery and histopathologic findings after spinal cord compression in a rat model.
    Jazayeri SB; Firouzi M; Abdollah Zadegan S; Saeedi N; Pirouz E; Nategh M; Jahanzad I; Mohebbi Ashtiani A; Rahimi-Movaghar V
    Acta Med Iran; 2013 Aug; 51(7):431-7. PubMed ID: 23945885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transplanted adult spinal cord-derived neural stem/progenitor cells promote early functional recovery after rat spinal cord injury.
    Parr AM; Kulbatski I; Zahir T; Wang X; Yue C; Keating A; Tator CH
    Neuroscience; 2008 Aug; 155(3):760-70. PubMed ID: 18588947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The characteristics of neuronal injury in a static compression model of spinal cord injury in adult rats.
    Huang WL; George KJ; Ibba V; Liu MC; Averill S; Quartu M; Hamlyn PJ; Priestley JV
    Eur J Neurosci; 2007 Jan; 25(2):362-72. PubMed ID: 17284176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prostaglandin E1 analog increases spinal cord blood flow at the point of compression during and after experimental spinal cord injury.
    Hamamoto Y; Ogata T; Morino T; Hino M; Yamamoto H
    Spinal Cord; 2010 Feb; 48(2):149-53. PubMed ID: 19687798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuroprotective effects of infliximab in experimental spinal cord injury.
    Kurt G; Ergün E; Cemil B; Börcek AO; Börcek P; Gülbahar O; Ceviker N
    Surg Neurol; 2009 Mar; 71(3):332-6, discussion 336. PubMed ID: 18440605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma.
    Gorio A; Gokmen N; Erbayraktar S; Yilmaz O; Madaschi L; Cichetti C; Di Giulio AM; Vardar E; Cerami A; Brines M
    Proc Natl Acad Sci U S A; 2002 Jul; 99(14):9450-5. PubMed ID: 12082184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quercetin in an animal model of spinal cord compression injury: correlation of treatment duration with recovery of motor function.
    Schültke E; Kamencic H; Skihar VM; Griebel R; Juurlink B
    Spinal Cord; 2010 Feb; 48(2):112-7. PubMed ID: 19736558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.