BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 684604)

  • 21. Better functional outcome of compression spinal cord injury in mice is associated with enhanced H-reflex responses.
    Lee HJ; Jakovcevski I; Radonjic N; Hoelters L; Schachner M; Irintchev A
    Exp Neurol; 2009 Apr; 216(2):365-74. PubMed ID: 19150614
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Histological and functional evaluation of experimental spinal cord injury: evidence of a stepwise response to graded compression.
    Gruner JA; Yee AK; Blight AR
    Brain Res; 1996 Aug; 729(1):90-101. PubMed ID: 8874880
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The value of decompression for acute experimental spinal cord compression injury.
    Dolan EJ; Tator CH; Endrenyi L
    J Neurosurg; 1980 Dec; 53(6):749-55. PubMed ID: 7441334
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Further Standardization in the Aneurysm Clip: The Effects of Occlusal Depth on the Outcome of Spinal Cord Injury in Rats.
    Rong H; Liu Y; Zhao Z; Feng J; Sun R; Ma Z; Gu X
    Spine (Phila Pa 1976); 2018 Feb; 43(3):E126-E131. PubMed ID: 28604493
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spinal cord blood flow in response to focal compression.
    Hitchon PW; Dyste GN; Osenbach RK; Todd MM; Yamada T; Jensen AE
    J Spinal Disord; 1990 Sep; 3(3):210-9. PubMed ID: 2134431
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New approach for graded compression spinal cord injuries in Rhesus macaque: method feasibility and preliminary observations.
    Guízar-Sahagún G; Grijalva I; Hernández-Godínez B; Franco-Bourland RE; Cruz-Antonio L; Martínez-Cruz A; Ibáñez-Contreras A; Madrazo I
    J Med Primatol; 2011 Dec; 40(6):401-13. PubMed ID: 21732951
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acute spinal cord injury in the rat: comparison of three experimental techniques.
    Khan M; Griebel R
    Can J Neurol Sci; 1983 Aug; 10(3):161-5. PubMed ID: 6616346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Velocity and Duration of Residual Compression in a Rat Dislocation Spinal Cord Injury Model.
    Speidel J; Mattucci S; Liu J; Kwon BK; Tetzlaff W; Oxland TR
    J Neurotrauma; 2020 May; 37(9):1140-1148. PubMed ID: 31950856
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spinal cord restitution following compression injuries in rats.
    Nyström B; Berglund JE
    Acta Neurol Scand; 1988 Dec; 78(6):467-72. PubMed ID: 3223233
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Studies of the treatment and pathophysiology of acute spinal cord injury in primates.
    Tator CH; Deecke L
    Paraplegia; 1973 Feb; 10(4):344-5. PubMed ID: 4633213
    [No Abstract]   [Full Text] [Related]  

  • 31. TENS augments blood flow in somatotopically linked spinal cord segments and mitigates compressive ischemia.
    Budgell BS; Sovak G; Soave D
    Spinal Cord; 2014 Oct; 52(10):744-8. PubMed ID: 25047054
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of exogenous thyroid hormones on functional recovery of the rat after acute spinal cord compression injury.
    Tator CH; van der Jagt RH
    J Neurosurg; 1980 Sep; 53(3):381-4. PubMed ID: 7420154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neurophysiological monitoring during acute and progressive experimentally induced compression injury of the spinal cord in pigs.
    Montes E; Burgos J; Barrios C; de Blas G; Hevia E; Forteza J
    Eur Spine J; 2017 Jan; 26(1):49-55. PubMed ID: 25862652
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical indicators of injury severity are decreased with increased thecal sac dimension in a bench-top model of contusion type spinal cord injury.
    Jones CF; Kwon BK; Cripton PA
    J Biomech; 2012 Apr; 45(6):1003-10. PubMed ID: 22349113
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a traumatic cervical dislocation spinal cord injury model with residual compression in the rat.
    Mattucci S; Speidel J; Liu J; Ramer MS; Kwon BK; Tetzlaff W; Oxland TR
    J Neurosci Methods; 2019 Jul; 322():58-70. PubMed ID: 30951755
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stretch along the craniocaudal axis improves shape recoverability of the spinal cord.
    Ozawa H; Matsumoto T; Ohashi T; Sato M; Itoi E
    J Biomech; 2011 Aug; 44(12):2313-5. PubMed ID: 21722907
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spinal cord monitoring of experimental incomplete cervical spinal cord injury: a preliminary report.
    Bohlman HH; Bahniuk E; Field G; Raskulinecz G
    Spine (Phila Pa 1976); 1981; 6(5):428-36. PubMed ID: 7302676
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of alternating current stimulation of the spinal cord on recovery from acute spinal cord injury in rats.
    Wallace MC; Tator CH; Gentles WM
    Surg Neurol; 1987 Oct; 28(4):269-76. PubMed ID: 3498231
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Possible mechanisms for observed pathophysiological variability in experimental spinal cord injury by the method of Allen.
    Koozekanani SH; Vise WM; Hashemi RM; McGhee RB
    J Neurosurg; 1976 Apr; 44(4):429-34. PubMed ID: 1255233
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The impact of continued cord compression following traumatic spinal cord injury.
    Fehlings MG
    J Neurosurg Spine; 2009 Nov; 11(5):568-9; discussion 569. PubMed ID: 19929359
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.