These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 684604)

  • 21. Better functional outcome of compression spinal cord injury in mice is associated with enhanced H-reflex responses.
    Lee HJ; Jakovcevski I; Radonjic N; Hoelters L; Schachner M; Irintchev A
    Exp Neurol; 2009 Apr; 216(2):365-74. PubMed ID: 19150614
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Histological and functional evaluation of experimental spinal cord injury: evidence of a stepwise response to graded compression.
    Gruner JA; Yee AK; Blight AR
    Brain Res; 1996 Aug; 729(1):90-101. PubMed ID: 8874880
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The value of decompression for acute experimental spinal cord compression injury.
    Dolan EJ; Tator CH; Endrenyi L
    J Neurosurg; 1980 Dec; 53(6):749-55. PubMed ID: 7441334
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Further Standardization in the Aneurysm Clip: The Effects of Occlusal Depth on the Outcome of Spinal Cord Injury in Rats.
    Rong H; Liu Y; Zhao Z; Feng J; Sun R; Ma Z; Gu X
    Spine (Phila Pa 1976); 2018 Feb; 43(3):E126-E131. PubMed ID: 28604493
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spinal cord blood flow in response to focal compression.
    Hitchon PW; Dyste GN; Osenbach RK; Todd MM; Yamada T; Jensen AE
    J Spinal Disord; 1990 Sep; 3(3):210-9. PubMed ID: 2134431
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New approach for graded compression spinal cord injuries in Rhesus macaque: method feasibility and preliminary observations.
    Guízar-Sahagún G; Grijalva I; Hernández-Godínez B; Franco-Bourland RE; Cruz-Antonio L; Martínez-Cruz A; Ibáñez-Contreras A; Madrazo I
    J Med Primatol; 2011 Dec; 40(6):401-13. PubMed ID: 21732951
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acute spinal cord injury in the rat: comparison of three experimental techniques.
    Khan M; Griebel R
    Can J Neurol Sci; 1983 Aug; 10(3):161-5. PubMed ID: 6616346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Velocity and Duration of Residual Compression in a Rat Dislocation Spinal Cord Injury Model.
    Speidel J; Mattucci S; Liu J; Kwon BK; Tetzlaff W; Oxland TR
    J Neurotrauma; 2020 May; 37(9):1140-1148. PubMed ID: 31950856
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spinal cord restitution following compression injuries in rats.
    Nyström B; Berglund JE
    Acta Neurol Scand; 1988 Dec; 78(6):467-72. PubMed ID: 3223233
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Studies of the treatment and pathophysiology of acute spinal cord injury in primates.
    Tator CH; Deecke L
    Paraplegia; 1973 Feb; 10(4):344-5. PubMed ID: 4633213
    [No Abstract]   [Full Text] [Related]  

  • 31. TENS augments blood flow in somatotopically linked spinal cord segments and mitigates compressive ischemia.
    Budgell BS; Sovak G; Soave D
    Spinal Cord; 2014 Oct; 52(10):744-8. PubMed ID: 25047054
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of exogenous thyroid hormones on functional recovery of the rat after acute spinal cord compression injury.
    Tator CH; van der Jagt RH
    J Neurosurg; 1980 Sep; 53(3):381-4. PubMed ID: 7420154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neurophysiological monitoring during acute and progressive experimentally induced compression injury of the spinal cord in pigs.
    Montes E; Burgos J; Barrios C; de Blas G; Hevia E; Forteza J
    Eur Spine J; 2017 Jan; 26(1):49-55. PubMed ID: 25862652
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical indicators of injury severity are decreased with increased thecal sac dimension in a bench-top model of contusion type spinal cord injury.
    Jones CF; Kwon BK; Cripton PA
    J Biomech; 2012 Apr; 45(6):1003-10. PubMed ID: 22349113
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a traumatic cervical dislocation spinal cord injury model with residual compression in the rat.
    Mattucci S; Speidel J; Liu J; Ramer MS; Kwon BK; Tetzlaff W; Oxland TR
    J Neurosci Methods; 2019 Jul; 322():58-70. PubMed ID: 30951755
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stretch along the craniocaudal axis improves shape recoverability of the spinal cord.
    Ozawa H; Matsumoto T; Ohashi T; Sato M; Itoi E
    J Biomech; 2011 Aug; 44(12):2313-5. PubMed ID: 21722907
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spinal cord monitoring of experimental incomplete cervical spinal cord injury: a preliminary report.
    Bohlman HH; Bahniuk E; Field G; Raskulinecz G
    Spine (Phila Pa 1976); 1981; 6(5):428-36. PubMed ID: 7302676
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of alternating current stimulation of the spinal cord on recovery from acute spinal cord injury in rats.
    Wallace MC; Tator CH; Gentles WM
    Surg Neurol; 1987 Oct; 28(4):269-76. PubMed ID: 3498231
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Possible mechanisms for observed pathophysiological variability in experimental spinal cord injury by the method of Allen.
    Koozekanani SH; Vise WM; Hashemi RM; McGhee RB
    J Neurosurg; 1976 Apr; 44(4):429-34. PubMed ID: 1255233
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The impact of continued cord compression following traumatic spinal cord injury.
    Fehlings MG
    J Neurosurg Spine; 2009 Nov; 11(5):568-9; discussion 569. PubMed ID: 19929359
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.