These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 6846510)

  • 1. Cross-sectional geometry of Pecos Pueblo femora and tibiae--a biomechanical investigation: I. Method and general patterns of variation.
    Ruff CB; Hayes WC
    Am J Phys Anthropol; 1983 Mar; 60(3):359-81. PubMed ID: 6846510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-sectional geometry of Pecos Pueblo femora and tibiae--a biomechanical investigation: II. Sex, age, side differences.
    Ruff CB; Hayes WC
    Am J Phys Anthropol; 1983 Mar; 60(3):383-400. PubMed ID: 6846511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating human long bone cross-sectional geometric properties: a comparison of noninvasive methods.
    O'Neill MC; Ruff CB
    J Hum Evol; 2004 Oct; 47(4):221-35. PubMed ID: 15454334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allometry between length and cross-sectional dimensions of the femur and tibia in Homo sapiens sapiens.
    Ruff CB
    Am J Phys Anthropol; 1984 Dec; 65(4):347-58. PubMed ID: 6524616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of the industrial transition on lower limb bone structure: A comparison of the inhabitants of Pecos Pueblo and present-day Indigenous peoples of New Mexico.
    Ruff CB; Wallace IJ; Toya C; Muñoz MAP; Meyer JV; Busby T; Reynolds AZ; Martinez J; Miller-Moore M; Rios R
    Am J Biol Anthropol; 2024 Jul; 184(3):e24922. PubMed ID: 38409941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of three standard anatomical reference frames for the tibia-fibula complex.
    Conti G; Cristofolini L; Juszczyk M; Leardini A; Viceconti M
    J Biomech; 2008 Dec; 41(16):3384-9. PubMed ID: 18995859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural changes in the femur with the transition to agriculture on the Georgia coast.
    Ruff CB; Larsen CS; Hayes WC
    Am J Phys Anthropol; 1984 Jun; 64(2):125-36. PubMed ID: 6465303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technical note: The effect of midshaft location on the error ranges of femoral and tibial cross-sectional parameters.
    Sládek V; Berner M; Galeta P; Friedl L; Kudrnová S
    Am J Phys Anthropol; 2010 Feb; 141(2):325-32. PubMed ID: 19919000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic variation in femur extrinsic strength in 29 different inbred strains of mice is dependent on variations in femur cross-sectional geometry and bone density.
    Wergedal JE; Sheng MH; Ackert-Bicknell CL; Beamer WG; Baylink DJ
    Bone; 2005 Jan; 36(1):111-22. PubMed ID: 15664009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computed tomography and biomechanical analysis of fossil long bones.
    Jungers WL; Minns RJ
    Am J Phys Anthropol; 1979 Feb; 50(2):285-90. PubMed ID: 109011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of primate, carnivoran and rodent limb bone cross-sectional properties: are primates really unique?
    Polk JD; Demes B; Jungers WL; Biknevicius AR; Heinrich RE; Runestad JA
    J Hum Evol; 2000 Sep; 39(3):297-325. PubMed ID: 10964531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone intrinsic material properties in three inbred mouse strains.
    Akhter MP; Fan Z; Rho JY
    Calcif Tissue Int; 2004 Nov; 75(5):416-20. PubMed ID: 15592798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical approach to the reconstruction of activity patterns in Neolithic Western Liguria, Italy.
    Marchi D; Sparacello VS; Holt BM; Formicola V
    Am J Phys Anthropol; 2006 Dec; 131(4):447-55. PubMed ID: 16685729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone modeling response to voluntary exercise in the hindlimb of mice.
    Plochocki JH; Rivera JP; Zhang C; Ebba SA
    J Morphol; 2008 Mar; 269(3):313-8. PubMed ID: 17957711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and remodeling responses to normal loading in the human lower limb.
    Drapeau MS; Streeter MA
    Am J Phys Anthropol; 2006 Mar; 129(3):403-9. PubMed ID: 16331659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural adaptations of the femur and humerus to arboreal and terrestrial environments in three species of macaque.
    Burr DB; Ruff CB; Johnson C
    Am J Phys Anthropol; 1989 Jul; 79(3):357-67. PubMed ID: 2764087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Body size, locomotion, and long bone cross-sectional geometry in indriid primates.
    Demes B; Jungers WL; Selpien K
    Am J Phys Anthropol; 1991 Dec; 86(4):537-47. PubMed ID: 1776660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical properties of the hindlimb bones of bullfrogs and cane toads in bending and torsion.
    Wilson MP; Espinoza NR; Shah SR; Blob RW
    Anat Rec (Hoboken); 2009 Jul; 292(7):935-44. PubMed ID: 19548305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationships between lower limb cross-sectional geometry and mobility: the case of a Neolithic sample from Italy.
    Marchi D
    Am J Phys Anthropol; 2008 Oct; 137(2):188-200. PubMed ID: 18470890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting long bone loading from cross-sectional geometry.
    Lieberman DE; Polk JD; Demes B
    Am J Phys Anthropol; 2004 Feb; 123(2):156-71. PubMed ID: 14730649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.