BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 6846511)

  • 1. Cross-sectional geometry of Pecos Pueblo femora and tibiae--a biomechanical investigation: II. Sex, age, side differences.
    Ruff CB; Hayes WC
    Am J Phys Anthropol; 1983 Mar; 60(3):383-400. PubMed ID: 6846511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-sectional geometry of Pecos Pueblo femora and tibiae--a biomechanical investigation: I. Method and general patterns of variation.
    Ruff CB; Hayes WC
    Am J Phys Anthropol; 1983 Mar; 60(3):359-81. PubMed ID: 6846510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sex differences in age-related remodeling of the femur and tibia.
    Ruff CB; Hayes WC
    J Orthop Res; 1988; 6(6):886-96. PubMed ID: 3171769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating human long bone cross-sectional geometric properties: a comparison of noninvasive methods.
    O'Neill MC; Ruff CB
    J Hum Evol; 2004 Oct; 47(4):221-35. PubMed ID: 15454334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of the industrial transition on lower limb bone structure: A comparison of the inhabitants of Pecos Pueblo and present-day Indigenous peoples of New Mexico.
    Ruff CB; Wallace IJ; Toya C; Muñoz MAP; Meyer JV; Busby T; Reynolds AZ; Martinez J; Miller-Moore M; Rios R
    Am J Biol Anthropol; 2024 Jul; 184(3):e24922. PubMed ID: 38409941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sex-specific developmental changes in muscle size and bone geometry at the femoral shaft.
    Högler W; Blimkie CJ; Cowell CT; Inglis D; Rauch F; Kemp AF; Wiebe P; Duncan CS; Farpour-Lambert N; Woodhead HJ
    Bone; 2008 May; 42(5):982-9. PubMed ID: 18337201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allometry between length and cross-sectional dimensions of the femur and tibia in Homo sapiens sapiens.
    Ruff CB
    Am J Phys Anthropol; 1984 Dec; 65(4):347-58. PubMed ID: 6524616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical approach to the reconstruction of activity patterns in Neolithic Western Liguria, Italy.
    Marchi D; Sparacello VS; Holt BM; Formicola V
    Am J Phys Anthropol; 2006 Dec; 131(4):447-55. PubMed ID: 16685729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children.
    Ward KA; Roberts SA; Adams JE; Mughal MZ
    Bone; 2005 Jun; 36(6):1012-8. PubMed ID: 15876561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural changes in the femur with the transition to agriculture on the Georgia coast.
    Ruff CB; Larsen CS; Hayes WC
    Am J Phys Anthropol; 1984 Jun; 64(2):125-36. PubMed ID: 6465303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limb bone bilateral asymmetry: variability and commonality among modern humans.
    Auerbach BM; Ruff CB
    J Hum Evol; 2006 Feb; 50(2):203-18. PubMed ID: 16310833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on long bones: variation in angular traits with sex, age, and laterality.
    Gualdi-Russo E
    Anthropol Anz; 1998 Dec; 56(4):289-99. PubMed ID: 10027041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mobility in Upper Paleolithic and Mesolithic Europe: evidence from the lower limb.
    Holt BM
    Am J Phys Anthropol; 2003 Nov; 122(3):200-15. PubMed ID: 14533179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of primate, carnivoran and rodent limb bone cross-sectional properties: are primates really unique?
    Polk JD; Demes B; Jungers WL; Biknevicius AR; Heinrich RE; Runestad JA
    J Hum Evol; 2000 Sep; 39(3):297-325. PubMed ID: 10964531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The degree and distribution of cortical bone mineralization in the human femoral shaft change with age and sex in a microradiographic study.
    Bergot C; Wu Y; Jolivet E; Zhou LQ; Laredo JD; Bousson V
    Bone; 2009 Sep; 45(3):435-42. PubMed ID: 19501681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sexual dimorphism affects tibia size and shape but not tissue-level mechanical properties.
    Tommasini SM; Nasser P; Jepsen KJ
    Bone; 2007 Feb; 40(2):498-505. PubMed ID: 17035111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationships between lower limb cross-sectional geometry and mobility: the case of a Neolithic sample from Italy.
    Marchi D
    Am J Phys Anthropol; 2008 Oct; 137(2):188-200. PubMed ID: 18470890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maturity- and sex-related changes in tibial bone geometry, strength and bone-muscle strength indices during growth: a 20-month pQCT study.
    Macdonald HM; Kontulainen SA; Mackelvie-O'Brien KJ; Petit MA; Janssen P; Khan KM; McKay HA
    Bone; 2005 Jun; 36(6):1003-11. PubMed ID: 15823517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of three standard anatomical reference frames for the tibia-fibula complex.
    Conti G; Cristofolini L; Juszczyk M; Leardini A; Viceconti M
    J Biomech; 2008 Dec; 41(16):3384-9. PubMed ID: 18995859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and remodeling responses to normal loading in the human lower limb.
    Drapeau MS; Streeter MA
    Am J Phys Anthropol; 2006 Mar; 129(3):403-9. PubMed ID: 16331659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.