BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 6847034)

  • 1. Incorporation of thymine, thymidine, adenine and uracil into nucleic acids of Mycobacterium phlei and its phage.
    Somogyi PA; Földes I
    Ann Microbiol (Paris); 1983; 134A(1):19-28. PubMed ID: 6847034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UPTAKE AND INCORPORATION OF THYMINE, THYMIDINE, URACIL, URIDINE, AND 5-FLUOROURACIL INTO THE NUCLEIC ACIDS OF BACILLUS SUBTILIS.
    BODMER WF; GRETHER S
    J Bacteriol; 1965 Apr; 89(4):1011-4. PubMed ID: 14276087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methylated nucleic acid bases in Mycobacterium and mycobacteriophage DNA.
    Somogyi PA; Maso Bel M; Földes I
    Acta Microbiol Acad Sci Hung; 1982; 29(3):181-5. PubMed ID: 7168369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of DNA synthesis in Bacillus subtilis by phage phi e.
    Marcus M; Newlon MC
    Virology; 1971 Apr; 44(1):83-93. PubMed ID: 4999126
    [No Abstract]   [Full Text] [Related]  

  • 5. Incorporation of adenine and uracil into the nucleic acids of Streptococcus bovis.
    Smith RC; Mathur CF
    Can J Microbiol; 1973 May; 19(5):591-5. PubMed ID: 4736195
    [No Abstract]   [Full Text] [Related]  

  • 6. Pyrimidine metabolism in Acinetobacter calcoaceticus.
    Ovrebo S; Kleppe K
    J Bacteriol; 1973 Oct; 116(1):331-6. PubMed ID: 4355484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thymidine and thymine incorporation into deoxyribonucleic acid: inhibition and repression by uridine of thymidine phosphorylase of Escherichia coli.
    Budman DR; Pardee AB
    J Bacteriol; 1967 Nov; 94(5):1546-50. PubMed ID: 4862197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Incorporation of thymidine into the DNA of actinomycetes. I. Incorporation of exogenous thymidine into the DNA of Thermoactinomyces vulgaris].
    Strohbach G; Kretschmer S
    Z Allg Mikrobiol; 1977; 17(7):559-68. PubMed ID: 304639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Inclusion of labeled precursors of macromolecular compounds in the mycobacterial cells in the presence of DP-2 preparation].
    Dermicheva SG; Dosanov KSh; Koronelli TV
    Probl Tuberk; 1993; (3):4-7. PubMed ID: 7527149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in macromolecular synthesis in Xanthomonas oryzae infected with bacteriophage XP-12.
    Ehrlich M; Lin FH; Ehrlich K; Brown SL; Mayo JA
    J Virol; 1977 Sep; 23(3):517-23. PubMed ID: 894790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of the unusual DNA of Bacillus subtilis bacteriophage SP-15.
    Neubort S; Marmur J
    J Virol; 1973 Nov; 12(5):1078-84. PubMed ID: 4203083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Availability of bases and nucleosides as precursors of nucleic acids in L cells and in the agent of meningopneumonitis.
    Tribby II; Moulder JW
    J Bacteriol; 1966 Jun; 91(6):2362-7. PubMed ID: 5943944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of "muscle cornin" on nucleic acid synthesis of carcinoma cells.
    Fujita T
    Nihon Seirigaku Zasshi; 1969; 31(9):543-52. PubMed ID: 5390871
    [No Abstract]   [Full Text] [Related]  

  • 14. The genetics of mycobacteria and mycobacteriophages - a review.
    Grange JM
    Tubercle; 1975 Sep; 56(3):227-38. PubMed ID: 814665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of pyrimidine bases and nucleosides in the coryneform bacteria Brevibacterium ammoniagenes and Micrococcus luteus.
    Auling G; Moss B
    J Bacteriol; 1984 May; 158(2):733-6. PubMed ID: 6202675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of bacterial DNA and protein synthesis in Bacillus subtilis by phage SP82. Effect of changes of temperature on the inhibition.
    Hayward J
    Virology; 1969 Aug; 38(4):538-49. PubMed ID: 4979606
    [No Abstract]   [Full Text] [Related]  

  • 17. A comparison of the utilization of thymine and thymidine as precursors for deoxyribonucleic acid synthesis in Bacillus subtilis, and their specific inhibition by 6-(p-hydroxyphenylazo)uracil and caffeine.
    Fraser L; Mitchell AI; Harris WJ
    Biochem J; 1972 Sep; 129(3):49P-50P. PubMed ID: 4633393
    [No Abstract]   [Full Text] [Related]  

  • 18. Macromolecular synthesis in mycobacteriophage I3 infected cells.
    Nagaraja V; Gopinathan KP
    Mol Biol Rep; 1981 Nov; 8(1):11-5. PubMed ID: 6173740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative studies of the strains PA and PN of Mycobacterium phlei leading to their reclassification: examination of lipids and DNA, biochemical tests and phage typing.
    Asselineau C; Baess I; Kolman A; Lapchine L; Puzo G; Wickmann K
    Ann Microbiol (Paris); 1979; 130B(4):385-98. PubMed ID: 539691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of exogenous adenine to label the nucleic acids of wild-type Neisseria meningitidis.
    Kingsbury DT; Duncan JF
    J Bacteriol; 1967 Oct; 94(4):1262-3. PubMed ID: 4963781
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.