These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 6847175)
1. In vitro activity of a group of broad-spectrum cephalosporins and other beta-lactam antibiotics against Chlamydia trachomatis. Hammerschlag MR; Gleyzer A Antimicrob Agents Chemother; 1983 Mar; 23(3):493-4. PubMed ID: 6847175 [TBL] [Abstract][Full Text] [Related]
2. In-vitro and in-vivo activity of parenterally administered beta-lactam antibiotics against Chlamydia trachomatis. Martin DH; Pastorek JG; Faro S Sex Transm Dis; 1986; 13(2):81-7. PubMed ID: 3520886 [TBL] [Abstract][Full Text] [Related]
3. In vitro activities of thirteen beta-lactam antibiotics against Chlamydia trachomatis. Muytjens HL; Heessen FW Antimicrob Agents Chemother; 1982 Sep; 22(3):520-1. PubMed ID: 7137988 [TBL] [Abstract][Full Text] [Related]
4. In vitro activity of beta-lactam drugs and sulbactam against Chlamydia trachomatis. Segreti J; Kapell KS; Trenholme GM Diagn Microbiol Infect Dis; 1992; 15(4):371-3. PubMed ID: 1611854 [TBL] [Abstract][Full Text] [Related]
5. In vitro activity of Ro 15-8074, Ro 19-5247, A-56268, and roxithromycin (RU 28965) against Neisseria gonorrhoeae and Chlamydia trachomatis. Bowie WR; Shaw CE; Chan DG; Black WA Antimicrob Agents Chemother; 1987 Mar; 31(3):470-2. PubMed ID: 2953304 [TBL] [Abstract][Full Text] [Related]
6. Susceptibility of Chlamydia trachomatis to antibiotics in vitro and in vivo. Johannisson G; Sernryd A; Lycke E Sex Transm Dis; 1979; 6(2):50-7. PubMed ID: 494040 [TBL] [Abstract][Full Text] [Related]
7. Failure of beta-lactam antibiotics to eradicate Chlamydia trachomatis in the endometrium despite apparent clinical cure of acute salpingitis. Sweet RL; Schachter J; Robbie MO JAMA; 1983 Nov; 250(19):2641-5. PubMed ID: 6632163 [TBL] [Abstract][Full Text] [Related]
8. In vitro activity of ciprofloxacin against Chlamydia trachomatis and Ureaplasma urealyticum. Rumpianesi F; Sambri V; Bertini S; Tamba I; Cevenini R Chemioterapia; 1984 Jun; 3(3):173-4. PubMed ID: 6529772 [TBL] [Abstract][Full Text] [Related]
9. Affinities of beta-lactams for penicillin binding proteins of Chlamydia trachomatis and their antichlamydial activities. Storey C; Chopra I Antimicrob Agents Chemother; 2001 Jan; 45(1):303-5. PubMed ID: 11120983 [TBL] [Abstract][Full Text] [Related]
10. Prediction of efficacy of antimicrobial agents in treatment of infections due to Chlamydia trachomatis. Bowie WR; Lee CK; Alexander ER J Infect Dis; 1978 Nov; 138(5):655-9. PubMed ID: 712119 [TBL] [Abstract][Full Text] [Related]
11. Effect of clinically relevant culture conditions on antimicrobial susceptibility of Chlamydia trachomatis. Wyrick PB; Davis CH; Raulston JE; Knight ST; Choong J Clin Infect Dis; 1994 Nov; 19(5):931-6. PubMed ID: 7893882 [TBL] [Abstract][Full Text] [Related]
12. Lack of in vitro activity of cefoxitin, cefamandole, cefuroxime, and piperacillin against Chlamydia trachomatis. Bowie WR Antimicrob Agents Chemother; 1982 Feb; 21(2):339-40. PubMed ID: 6462108 [TBL] [Abstract][Full Text] [Related]
13. High treatment failure rate is better explained by resistance gene detection than by minimum inhibitory concentration in patients with urogenital Chlamydia trachomatis infection. Shao L; You C; Cao J; Jiang Y; Liu Y; Liu Q Int J Infect Dis; 2020 Jul; 96():121-127. PubMed ID: 32173573 [TBL] [Abstract][Full Text] [Related]
14. Antimicrobial Resistance Screening in Chlamydia trachomatis by Optimized McCoy Cell Culture System and Direct qPCR-Based Monitoring of Chlamydial Growth. Meštrović T; Virok DP; Ljubin-Sternak S; Raffai T; Burián K; Vraneš J Methods Mol Biol; 2019; 2042():33-43. PubMed ID: 31385269 [TBL] [Abstract][Full Text] [Related]
15. In vitro activity of a novel diaminopyrimidine compound, iclaprim, against Chlamydia trachomatis and C. pneumoniae. Kohlhoff SA; Roblin PM; Reznik T; Hawser S; Islam K; Hammerschlag MR Antimicrob Agents Chemother; 2004 May; 48(5):1885-6. PubMed ID: 15105151 [TBL] [Abstract][Full Text] [Related]
16. In vitro activity of the two new 4-quinolones A56619 and A56620 against Neisseria gonorrhoeae, Chlamydia trachomatis, Mycoplasma hominis, Ureaplasma urealyticum and Gardnerella vaginalis. Tjiam KH; Wagenvoort JH; van Klingeren B; Piot P; Stolz E; Michel MF Eur J Clin Microbiol; 1986 Oct; 5(5):498-501. PubMed ID: 3096726 [TBL] [Abstract][Full Text] [Related]
17. In-vitro activity of roxithromycin against Chlamydia trachomatis. Moroni A; Sambri V; Rumpianesi F; Donati M; Cevenini R J Chemother; 1991 Jan; 3 Suppl 1():28-9. PubMed ID: 12041779 [TBL] [Abstract][Full Text] [Related]
18. In vitro activities of ciprofloxacin, norfloxacin, pipemidic acid, cinoxacin, and nalidixic acid against Chlamydia trachomatis. Heessen FW; Muytjens HL Antimicrob Agents Chemother; 1984 Jan; 25(1):123-4. PubMed ID: 6230988 [TBL] [Abstract][Full Text] [Related]
19. Antimicrobial activity of several antibiotics and a sulfonamide against Chlamydia trachomatis organisms in cell culture. Kuo CC; Wang SP; Grayston JT Antimicrob Agents Chemother; 1977 Jul; 12(1):80-3. PubMed ID: 883821 [TBL] [Abstract][Full Text] [Related]
20. In vitro activities of rifamycin derivatives ABI-1648 (Rifalazil, KRM-1648), ABI-1657, and ABI-1131 against Chlamydia trachomatis and recent clinical isolates of Chlamydia pneumoniae. Roblin PM; Reznik T; Kutlin A; Hammerschlag MR Antimicrob Agents Chemother; 2003 Mar; 47(3):1135-6. PubMed ID: 12604555 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]