These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 6847585)

  • 41. Renal medullary oxidative stress, pressure-natriuresis, and hypertension.
    Cowley AW
    Hypertension; 2008 Nov; 52(5):777-86. PubMed ID: 18852392
    [No Abstract]   [Full Text] [Related]  

  • 42. Chemical renal medullectomy; effect upon reversal of two-kidney, one-clip hypertension in the rat.
    Bing RF; Russell GI; Swales JD; Thurston H; Fletcher A
    Clin Sci (Lond); 1981 Dec; 61 Suppl 7():335s-338s. PubMed ID: 7318335
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Renomedullary antihypertensive endocrine function.
    Muirhead EE
    Acta Biol Med Ger; 1976; 35(8-9):1181-93. PubMed ID: 1007774
    [No Abstract]   [Full Text] [Related]  

  • 44. Alterations in renal medullary hemodynamics and the pressure-natriuretic response in genetic hypertension.
    Roman RJ
    Am J Hypertens; 1990 Nov; 3(11):893-900. PubMed ID: 2261156
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Renomedullary deficiency. A contributory factor in the pathogenesis of experimental renal hypertension.
    Susic D; Sparks JC; Machado EA
    Experientia; 1976 Mar; 32(3):354-5. PubMed ID: 1253908
    [No Abstract]   [Full Text] [Related]  

  • 46. Infusion of Valproic Acid Into the Renal Medulla Activates Stem Cell Population and Attenuates Salt-Sensitive Hypertension in Dahl S Rats.
    Wang Z; Zhu Q; Wang W; Yi F; Li PL; Boini KM; Li N
    Cell Physiol Biochem; 2017; 42(3):1264-1273. PubMed ID: 28693025
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Antihypertensive effect of volume depletion: interrelation with renal prostaglandins.
    Düsing R; Attallah A; Braselton WE; Lee JB
    Contrib Nephrol; 1978; 12():41-53. PubMed ID: 699606
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pathology, aetiology and pathogenesis of analgesic nephropathy.
    Nanra RS
    Aust N Z J Med; 1976; 6 Suppl 1():Suppl 1:33-7. PubMed ID: 1070995
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analgesic nephropathy and the renal concentrating mechanism.
    Burry A; Cross R; Axelsen R
    Pathol Annu; 1977; 12 Pt 2():1-31. PubMed ID: 341056
    [No Abstract]   [Full Text] [Related]  

  • 50. High salt intake increases endothelin B receptor function in the renal medulla of rats.
    Jin C; Speed JS; Pollock DM
    Life Sci; 2016 Aug; 159():144-147. PubMed ID: 26724217
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Physiological mechanisms concerned with blood pressure elevation.
    Conway J
    Ned Tijdschr Geneeskd; 1967 Nov; 111(47):2154-5. PubMed ID: 6064788
    [No Abstract]   [Full Text] [Related]  

  • 52. Antihypertensive and hypertensive effects of the kidney. Elucidated by treatment with medullary transplants and with blockade either of the reninangiotensin-system or of the prostaglandin biosynthesis.
    Manthorpe T
    Acta Pathol Microbiol Scand A; 1975 Jul; 83(4):395-405. PubMed ID: 1098387
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Irreversible damage to the medullary interstitium in experimental analgesic nephropathy in F344 rats.
    Burrell JH; Yong JL; MacDonald GJ
    J Pathol; 1991 Aug; 164(4):329-38. PubMed ID: 1919871
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Oral intake of rosiglitazone promotes a central antihypertensive effect via upregulation of peroxisome proliferator-activated receptor-gamma and alleviation of oxidative stress in rostral ventrolateral medulla of spontaneously hypertensive rats.
    Chan SH; Wu KL; Kung PS; Chan JY
    Hypertension; 2010 Jun; 55(6):1444-53. PubMed ID: 20404217
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of papillotoxic agents on expression of cyclooxygenase isoforms in the rat kidney.
    Khan KN; Alden CL; Gleissner SE; Gessford MK; Maziasz TJ
    Toxicol Pathol; 1998; 26(1):137-42. PubMed ID: 9502396
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Do angiotensin converting enzyme inhibitors lower blood pressure in the rat partly via the humorally mediated antihypertensive system of the renal medulla?
    Karlström G; Arnman V; Bergström G; Bohman SO; Rudenstam J; Göthberg G
    J Hypertens; 1990 Jun; 8(6):501-13. PubMed ID: 2165084
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hypertension, natriuresis and the renomedullary prostaglandins: an overview.
    Lee JB
    Prostaglandins; 1973 May; 3(5):551-79. PubMed ID: 4580932
    [No Abstract]   [Full Text] [Related]  

  • 58. Chemical renal medullectomy and arterial pressure response to sinoaortic denervation.
    Beloni SN; Silva-Costa R; Machado BH; Salgado HC
    Hypertension; 1992 Feb; 19(2 Suppl):II116-20. PubMed ID: 1735564
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antioxidant treatment prevents renal damage and dysfunction and reduces arterial pressure in salt-sensitive hypertension.
    Tian N; Thrasher KD; Gundy PD; Hughson MD; Manning RD
    Hypertension; 2005 May; 45(5):934-9. PubMed ID: 15837840
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Proceedings of the Muirhead Symposium, a meeting on Antihypertensive and Hypertensive Mechanisms. October 13-14, 1987, Memphis, Tennessee.
    Am J Med Sci; 1988 Apr; 295(4):229-413. PubMed ID: 3284344
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.