These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 6848142)

  • 1. The membrane potential of human platelets.
    Friedhoff LT; Sonenberg M
    Blood; 1983 Jan; 61(1):180-5. PubMed ID: 6848142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Platelet membrane potential: simultaneous measurement of diSC3(5) fluorescence and optical density.
    Pipili E
    Thromb Haemost; 1985 Oct; 54(3):645-9. PubMed ID: 2418525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of platelet membrane potential in the initiation of platelet aggregation.
    MacIntyre DE; Rink TJ
    Thromb Haemost; 1982 Feb; 47(1):22-6. PubMed ID: 6176041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Platelet 5-hydroxytryptamine transport, an electroneutral mechanism coupled to potassium.
    Rudnick G; Nelson PJ
    Biochemistry; 1978 Oct; 17(22):4739-42. PubMed ID: 728383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of lipophilic probes of membrane potential to assess human neutrophil activation. Abnormality in chronic granulomatous disease.
    Seligmann BE; Gallin JI
    J Clin Invest; 1980 Sep; 66(3):493-503. PubMed ID: 6249851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Platelet membrane potential as a modulator of aggregating mechanisms.
    Palés J; López A; Gual A
    Biochim Biophys Acta; 1988 Sep; 944(1):85-9. PubMed ID: 2843237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of sodium conductances on platelet activation.
    Palés J; Palacios-Araus L; López A; Gual A
    Biochim Biophys Acta; 1989 Mar; 980(1):33-6. PubMed ID: 2923896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Valinomycin can depolarize mitochondria in intact lymphocytes without increasing plasma membrane potassium fluxes.
    Felber SM; Brand MD
    FEBS Lett; 1982 Dec; 150(1):122-4. PubMed ID: 7160466
    [No Abstract]   [Full Text] [Related]  

  • 9. Reduction in accumulation of [3H]triphenylmethylphosphonium cation in neuroblastoma cells caused by optical probes of membrane potential. Evidence for interactions between carbocyanine dyes and lipophilic anions.
    Milligan G; Strange PG
    Biochim Biophys Acta; 1983 Jul; 762(4):585-92. PubMed ID: 6871253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probes of transmembrane potentials in platelets: changes in cyanine dye fluorescence in response to aggregation stimuli.
    Horne WC; Simons ER
    Blood; 1978 Apr; 51(4):741-9. PubMed ID: 415774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of altered transmembrane ion gradients on membrane potential and aggregation of human platelets in blood plasma.
    Friedhoff LT; Kim E; Priddle M; Sonenberg M
    Biochem Biophys Res Commun; 1981 Oct; 102(3):832-7. PubMed ID: 7306189
    [No Abstract]   [Full Text] [Related]  

  • 12. Membrane potential of stored platelets and its effect on platelet functions.
    Ishikawa Y; Sasakawa S
    Thromb Res; 1987 Feb; 45(3):265-73. PubMed ID: 3660341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release of a fluorescent probe as an indicator of lysosomal granule secretion by thrombin-stimulated human platelets.
    Greenberg-Sepersky SM; Simons ER
    Anal Biochem; 1985 May; 147(1):57-62. PubMed ID: 4025824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulation of non-selective cation channels providing Ca2+ influx into platelets by platelet-activating factor and other aggregation inducers.
    Avdonin PV; Cheglakov IB; Tkachuk VA
    Eur J Biochem; 1991 May; 198(1):267-73. PubMed ID: 1710183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of fluorescent probe to monitor alterations in trans-membrane potential in single cell suspensions.
    Bramhall JS; Morgan JI; Perris AD; Britten AZ
    Biochem Biophys Res Commun; 1976 Sep; 72(2):654-62. PubMed ID: 825119
    [No Abstract]   [Full Text] [Related]  

  • 16. Membrane microenvironmental changes during activation of human blood platelets by thrombin. A study with a fluorescent probe.
    Nathan I; Fleischer G; Livne A; Dvilansky A; Parola AH
    J Biol Chem; 1979 Oct; 254(19):9822-8. PubMed ID: 489573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of membrane potentials (psi) of erythrocytes and white adipocytes by the accumulation of triphenylmethylphosphonium cation.
    Cheng K; Haspel HC; Vallano ML; Osotimehin B; Sonenberg M
    J Membr Biol; 1980 Oct; 56(3):191-201. PubMed ID: 6779011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of membrane potential of chromaffin granules by the accumulation of triphenylmethylphosphonium cation.
    Holz RW
    J Biol Chem; 1979 Jul; 254(14):6703-9. PubMed ID: 582174
    [No Abstract]   [Full Text] [Related]  

  • 19. Effects of 2-chloroadenosine on electric potentials in brain synaptic membrane vesicles.
    Michaelis ML; Michaelis EK
    Biochim Biophys Acta; 1981 Oct; 648(1):55-62. PubMed ID: 7295731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of valinomycin induced membrane potential on erythrocyte shape.
    Glaser R; Gengnagel C; Donath J
    Biomed Biochim Acta; 1991; 50(7):869-77. PubMed ID: 1759965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.