These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 6848209)

  • 1. A simulation study of the effects of torso inhomogeneities on electrocardiographic potentials, using realistic heart and torso models.
    Gulrajani RM; Mailloux GE
    Circ Res; 1983 Jan; 52(1):45-56. PubMed ID: 6848209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrocardiographic imaging: I. Effect of torso inhomogeneities on body surface electrocardiographic potentials.
    Ramanathan C; Rudy Y
    J Cardiovasc Electrophysiol; 2001 Feb; 12(2):229-40. PubMed ID: 11232624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrocardiographic imaging: II. Effect of torso inhomogeneities on noninvasive reconstruction of epicardial potentials, electrograms, and isochrones.
    Ramanathan C; Rudy Y
    J Cardiovasc Electrophysiol; 2001 Feb; 12(2):241-52. PubMed ID: 11232625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison between electrocardiographic and magnetocardiographic inverse solutions using the boundary element method.
    Hren R; Zhang X; Stroink G
    Med Biol Eng Comput; 1996 Mar; 34(2):110-4. PubMed ID: 8733546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of torso geometry on magnetocardiographic isofield maps.
    Horacek BM; Purcell C; Lamothe R; Merritt R; Kafer C; Periyalwar S; Dey S; Leon LJ; Stroink G
    Phys Med Biol; 1987 Jan; 32(1):121-4. PubMed ID: 3823131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of rotational myocardial anisotropy in forward potential computations with equivalent heart dipoles.
    Thivierge M; Gulrajani RM; Savard P
    Ann Biomed Eng; 1997; 25(3):477-98. PubMed ID: 9146803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of inhomogeneities and anisotropies on electrocardiographic fields: a 3-D finite-element study.
    Klepfer RN; Johnson CR; Macleod RS
    IEEE Trans Biomed Eng; 1997 Aug; 44(8):706-19. PubMed ID: 9254984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the volume conductor on the apparent orientation of a known cardiac dipole.
    Salu Y; Laughlin D; Rogers J; Marcus M
    J Electrocardiol; 1978 Apr; 11(2):143-6. PubMed ID: 660017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The inverse problem of electrocardiography: a solution in terms of single- and double-layer sources of the epicardial surface.
    Horácek BM; Clements JC
    Math Biosci; 1997 Sep; 144(2):119-54. PubMed ID: 9258003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forward problem of electrocardiography: construction of human torso models and field calculations using finite element method.
    Shahidi AV; Savard P
    Med Biol Eng Comput; 1994 Jul; 32(4 Suppl):S25-33. PubMed ID: 7967835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation studies of the electrocardiogram. I. The normal heart.
    Miller WT; Geselowitz DB
    Circ Res; 1978 Aug; 43(2):301-15. PubMed ID: 668061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of inhomogeneous volume conductor models on the ECG and the MCG.
    Bruder H; Scholz B; Abraham-Fuchs K
    Phys Med Biol; 1994 Nov; 39(11):1949-68. PubMed ID: 15560004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer simulation of epicardial potentials using a heart-torso model with realistic geometry.
    Weixue L; Ling X
    IEEE Trans Biomed Eng; 1996 Feb; 43(2):211-7. PubMed ID: 8682532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational reconstruction of body surfact isopotential maps in myocardial infarction: comparison between nontransmural and transmural infarction.
    Toyama J; Niimi N; Ishikawa T; Wada M; Oguri H; Okajima M; Yamada K
    Adv Cardiol; 1978; 21():77-81. PubMed ID: 619574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The inverse problem in electrocardiography: solutions in terms of epicardial potentials.
    Rudy Y; Messinger-Rapport BJ
    Crit Rev Biomed Eng; 1988; 16(3):215-68. PubMed ID: 3064971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of material properties and geometry on electrocardiographic forward simulations.
    Bradley CP; Pullan AJ; Hunter PJ
    Ann Biomed Eng; 2000 Jul; 28(7):721-41. PubMed ID: 11016411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of variations in conductivity and geometrical parameters on the electrocardiogram, using an eccentric spheres model.
    Rudy Y; Plonsey R; Liebman J
    Circ Res; 1979 Jan; 44(1):104-11. PubMed ID: 758226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of torso impedance on epicardial and body surface potentials: a modeling study.
    Buist ML; Pullan AJ
    IEEE Trans Biomed Eng; 2003 Jul; 50(7):816-24. PubMed ID: 12848349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of torso inhomogeneities on body surface potentials quantified using "tailored" geometry.
    van Oosterom A; Huiskamp GJ
    J Electrocardiol; 1989 Jan; 22(1):53-72. PubMed ID: 2921579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of individual torso geometry on inverse solution to 2 dipoles.
    Svehlikova J; Lenkova J; Turzova M; Tysler M; Kania M; Maniewski R
    J Electrocardiol; 2012; 45(1):7-12. PubMed ID: 21908001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.