These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 6848209)

  • 41. Source localization in an inhomogeneous physical thorax phantom.
    Tenner U; Haueisen J; Nowak H; Leder U; Brauer H
    Phys Med Biol; 1999 Aug; 44(8):1969-81. PubMed ID: 10473208
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A model study of volume conductor effects on endocardial and intracavitary potentials.
    Khoury DS; Rudy Y
    Circ Res; 1992 Sep; 71(3):511-25. PubMed ID: 1499104
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Determination of the locus of the heart vector from body surface measurements: model experiments.
    Nelson CV; Hodgkin BC; Voukydis PC
    J Electrocardiol; 1975; 8(2):135-46. PubMed ID: 1151194
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A new algorithm to diagnose atrial ectopic origin from multi lead ECG systems--insights from 3D virtual human atria and torso.
    Alday EA; Colman MA; Langley P; Butters TD; Higham J; Workman AJ; Hancox JC; Zhang H
    PLoS Comput Biol; 2015 Jan; 11(1):e1004026. PubMed ID: 25611350
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Studies of the electrocardiogram using realistic cardiac and torso models.
    Cuffin BN; Geselowitz DB
    IEEE Trans Biomed Eng; 1977 May; 24(3):242-52. PubMed ID: 873549
    [No Abstract]   [Full Text] [Related]  

  • 46. Ranking the influence of tissue conductivities on forward-calculated ECGs.
    Keller DU; Weber FM; Seemann G; Dössel O
    IEEE Trans Biomed Eng; 2010 Jul; 57(7):1568-76. PubMed ID: 20659824
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Estimation of heart-surface potentials using regularized multipole sources.
    Beetner DG; Arthur RM
    IEEE Trans Biomed Eng; 2004 Aug; 51(8):1366-73. PubMed ID: 15311821
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Accuracy of a single equivalent moving dipole model in a realistic anatomic geometry torso model.
    Fukuoka Y; Armoundas AA; Oostendorp TF; Cohen RJ
    Comput Cardiol; 2000; 27():439-42. PubMed ID: 14632014
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Forward and inverse electrocardiographic calculations using resistor network models of the human torso.
    Walker SJ; Kilpatrick D
    Circ Res; 1987 Oct; 61(4):504-13. PubMed ID: 3652398
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Which bidomain conductivity is the most important for modelling heart and torso surface potentials during ischaemia?
    Johnston BM; Johnston PR
    Comput Biol Med; 2021 Oct; 137():104830. PubMed ID: 34534792
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Individual custom-designed modelling for the finite element method to be used in the forward calculation of a body surface isopotential map.
    Oguri KK; Iwata A; Suzumura N; Okajima M; Doniwa K; Ohta K
    Front Med Biol Eng; 1991; 3(4):259-68. PubMed ID: 1799560
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Integral characteristics of the eletrical generator of the human heart].
    Kneppo P; Titomir LI
    Biofizika; 1977; 22(4):686-93. PubMed ID: 901830
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Correlations between the spread of ventricular activation and map patterns of measured and difference maps.
    Toyoshima H
    Am Heart J; 1976 Aug; 92(2):183-92. PubMed ID: 941830
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Forward problem of electrocardiography: is it solved?
    Bear LR; Cheng LK; LeGrice IJ; Sands GB; Lever NA; Paterson DJ; Smaill BH
    Circ Arrhythm Electrophysiol; 2015 Jun; 8(3):677-84. PubMed ID: 25834182
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A new method for regularization parameter determination in the inverse problem of electrocardiography.
    Johnston PR; Gulrajani RM
    IEEE Trans Biomed Eng; 1997 Jan; 44(1):19-39. PubMed ID: 9214781
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantitative prediction of body surface potentials from myocardial action potentials using a summed dipole model.
    Babbs CF
    Cardiovasc Eng; 2009 Jun; 9(2):59-71. PubMed ID: 19543975
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of geometric and topologic differences in boundary element models on magnetocardiographic localization accuracy.
    Pesola K; Lötjönen J; Nenonen J; Magnin IE; Lauerma K; Fenici R; Katila T
    IEEE Trans Biomed Eng; 2000 Sep; 47(9):1237-47. PubMed ID: 11008425
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A simplified 3D model of whole heart electrical activity and 12-lead ECG generation.
    Sovilj S; Magjarević R; Lovell NH; Dokos S
    Comput Math Methods Med; 2013; 2013():134208. PubMed ID: 23710247
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The electrocardiographic forward problem: A benchmark study.
    Bergquist JA; Good WW; Zenger B; Tate JD; Rupp LC; MacLeod RS
    Comput Biol Med; 2021 Jul; 134():104476. PubMed ID: 34051453
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of torso shape and change of dipole location on ECG and VCG lead vectors in a homogeneous torso model.
    Toyoshima H; Ito A; Toyama J; Yamada K
    J Electrocardiol; 1979 Jul; 12(3):307-14. PubMed ID: 469444
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.