These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 6848492)

  • 1. Primary structure of macromomycin, an antitumor antibiotic protein.
    Samy TS; Hahm KS; Modest EJ; Lampman GW; Keutmann HT; Umezawa H; Herlihy WC; Gibson BW; Carr SA; Biemann K
    J Biol Chem; 1983 Jan; 258(1):183-91. PubMed ID: 6848492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A revised primary structure for neocarzinostatin based on fast atom bombardment and gas chromatographic-mass spectrometry.
    Gibson BW; Herlihy WC; Samy TS; Hahm KS; Maeda H; Meienhofer J; Biemann K
    J Biol Chem; 1984 Sep; 259(17):10801-6. PubMed ID: 6236220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reexamination of the primary structure of an antitumor protein, neocarzinostatin.
    Kuromizu K; Tsunasawa S; Maeda H; Abe O; Sakiyama F
    Arch Biochem Biophys; 1986 Apr; 246(1):199-205. PubMed ID: 2938543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the antitumor protein neocarzinostatin. Purification, amino acid composition, disulfide reduction, and isolation and composition of tryptic peptides.
    Maeda H; Glaser CB; Czombos J; Meienhoffer J
    Arch Biochem Biophys; 1974 Oct; 164(2):369-78. PubMed ID: 4282218
    [No Abstract]   [Full Text] [Related]  

  • 5. Chemical studies on actinoxanthin.
    Khokhlov AS; Reshetov PD; Chupova LA; Cherches BZ; Zhigis LS; Stoyachemko IA
    J Antibiot (Tokyo); 1976 Oct; 29(10):1026-34. PubMed ID: 994323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The primary structure of the cytotoxin restrictocin.
    López-Otín C; Barber D; Fernández-Luna JL; Soriano F; Méndez E
    Eur J Biochem; 1984 Sep; 143(3):621-34. PubMed ID: 6479166
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary structure of Paim I, an alpha-amylase inhibitor from Streptomyces corchorushii, determined by the combination of Edman degradation and fast atom bombardment mass spectrometry.
    Hirayama K; Takahashi R; Akashi S; Fukuhara K; Oouchi N; Murai A; Arai M; Murao S; Tanaka K; Nojima I
    Biochemistry; 1987 Oct; 26(20):6483-8. PubMed ID: 3501315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The identification of disulfides in ricin D using proteolytic cleavage followed by negative-ion nano-electrospray ionization mass spectrometry of the peptide fragments.
    Tran TT; Brinkworth CS; Bowie JH
    Rapid Commun Mass Spectrom; 2015 Jan; 29(2):182-90. PubMed ID: 25641493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assignment of disulfide bonds in the alpha subunit of human chorionic gonadotropin.
    Mise T; Bahl OP
    J Biol Chem; 1980 Sep; 255(18):8516-22. PubMed ID: 7410374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assignment of the five disulfide bridges in an alpha-amylase inhibitor from wheat kernel by fast-atom-bombardment mass spectrometry and Edman degradation.
    Poerio E; Caporale C; Carrano L; Pucci P; Buonocore V
    Eur J Biochem; 1991 Aug; 199(3):595-600. PubMed ID: 1868845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The amino acid sequence of Clostridium pasteurianum iron protein, a component of nitrogenase. I. Tryptic peptides.
    Tanaka M; Haniu M; Yasunobu KT
    J Biol Chem; 1977 Oct; 252(20):7081-8. PubMed ID: 561781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antitumor proteins of Streptomyces macromomyceticus: purification and characterization of auromomycin, macromomycin A, and macromomycin D.
    Vandré DD; Montgomery R
    Biochemistry; 1982 Jul; 21(14):3343-52. PubMed ID: 6810921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The primary structure of pig liver thioltransferase.
    Gan ZR; Wells WW
    J Biol Chem; 1987 May; 262(14):6699-703. PubMed ID: 3571278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Profile of the disulfide bonds in acetylcholinesterase.
    MacPhee-Quigley K; Vedvick TS; Taylor P; Taylor SS
    J Biol Chem; 1986 Oct; 261(29):13565-70. PubMed ID: 3759980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid sequence of tuberculin-active protein from Mycobacterium tuberculosis.
    Kuwabara S
    J Biol Chem; 1975 Apr; 250(7):2563-8. PubMed ID: 804477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on macromomycin, an antitumor protein.
    Im WB; Chiang CK; Montgomery R
    J Biol Chem; 1978 May; 253(9):3259-64. PubMed ID: 641069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural characterization by mass spectrometry of native and recombinant human relaxin.
    Stults JT; Bourell JH; Canova-Davis E; Ling VT; Laramee GR; Winslow JW; Griffin PR; Rinderknecht E; Vandlen RL
    Biomed Environ Mass Spectrom; 1990 Nov; 19(11):655-64. PubMed ID: 2076464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary structure of 3-phosphoglycerate kinase from horse muscle. II. Amino acid sequence of cyanogen bromide peptides CB1-CB4 and CB6-CB14, sequence of methionine-containing regions, and complete sequence of the enzyme.
    Merrett M
    J Biol Chem; 1981 Oct; 256(20):10293-305. PubMed ID: 7287713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The primary structure of the alpha subunit of protocatechuate 3,4-dioxygenase. I. Isolation and sequence of the tryptic peptides.
    Kohlmiller NA; Howard JB
    J Biol Chem; 1979 Aug; 254(15):7302-8. PubMed ID: 110807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a soluble form of human CD4. Peptide analyses confirm the expected amino acid sequence, identify glycosylation sites and demonstrate the presence of three disulfide bonds.
    Harris RJ; Chamow SM; Gregory TJ; Spellman MW
    Eur J Biochem; 1990 Mar; 188(2):291-300. PubMed ID: 2318210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.