BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 6848504)

  • 1. Coformycin inhibition of platelet AMP deaminase has no effect on thrombin-induced platelet secretion nor on glycolysis or glycogenolysis.
    Ashby B; Wernick E; Holmsen H
    J Biol Chem; 1983 Jan; 258(1):321-5. PubMed ID: 6848504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Platelet AMP deaminase. Regulation by Mg-ATP2- and inorganic phosphate and inhibition by the transition state analog coformycin.
    Ashby B; Holmsen H
    J Biol Chem; 1983 Mar; 258(6):3668-72. PubMed ID: 6601104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potentiation of adenine toxicity to Chinese hamster cells by coformycin: suppression in mutants with altered regulation of purine biosynthesis or increased adenylate-deaminase activity.
    Debatisse M; Berry M; Buttin G
    J Cell Physiol; 1981 Jan; 106(1):1-11. PubMed ID: 7204504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purine catabolism in isolated rat hepatocytes. Influence of coformycin.
    Van den Berghe G; Bontemps F; Hers HG
    Biochem J; 1980 Jun; 188(3):913-20. PubMed ID: 7470045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adenylate deaminase: potent inhibition by 2'-deoxycoformycin 5'-phosphate.
    Frieden C; Gilbert HR; Miller WH; Miller RL
    Biochem Biophys Res Commun; 1979 Nov; 91(1):278-83. PubMed ID: 518627
    [No Abstract]   [Full Text] [Related]  

  • 6. IMP production by ATP-depleted adult rat heart cells. Effects of glycolysis and alpha 1-adrenergic stimulation.
    Hohl CM; Wimsatt DK; Brierley GP; Altschuld RA
    Circ Res; 1989 Sep; 65(3):754-60. PubMed ID: 2548764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenine nucleotide metabolism of blood platelets. IX. Time course of secretion and changes in energy metabolism in thrombin-treated platelets.
    Fukami MH; Holmsen H; Salganicoff L
    Biochim Biophys Acta; 1976 Oct; 444(3):633-43. PubMed ID: 10970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of deoxyadenosine-induced catabolism of adenine ribonucleotides in adenosine deaminase-inhibited human T lymphoblastoid cells.
    Bagnara AS; Hershfield MS
    Proc Natl Acad Sci U S A; 1982 Apr; 79(8):2673-7. PubMed ID: 6283540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of platelet AMP deaminase activity in situ.
    Verhoeven AJ; Marszalek J; Holmsen H
    Biochem J; 1990 Jan; 265(1):267-75. PubMed ID: 2302169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of platelet phosphorylase.
    Chaiken R; Pagano D; Detwiler TC
    Biochim Biophys Acta; 1975 Oct; 403(2):315-25. PubMed ID: 170968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations in nucleotide pools induced by 3-deazaadenosine and related compounds. Role of adenylate deaminase.
    Bennett LL; Brockman RW; Allan PW; Rose LM; Shaddix SC
    Biochem Pharmacol; 1988 Apr; 37(7):1233-44. PubMed ID: 3355597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of adenosine triphosphate catabolism induced by deoxyadenosine and by nucleoside analogues in adenosine deaminase-inhibited human erythrocytes.
    Bontemps F; Van den Berghe G
    Cancer Res; 1989 Sep; 49(18):4983-9. PubMed ID: 2788493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of antimycin A and 2-deoxyglucose on secretion in human platelets. Differential inhibition of the secretion of acid hydrolases and adenine nucleotides.
    Holmsen H; Robkin L; Day HJ
    Biochem J; 1979 Aug; 182(2):413-9. PubMed ID: 508292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential energy requirements for platelet responses. A simultaneous study of aggregation, three secretory processes, arachidonate liberation, phosphatidylinositol breakdown and phosphatidate production.
    Holmsen H; Kaplan KL; Dangelmaier CA
    Biochem J; 1982 Oct; 208(1):9-18. PubMed ID: 6218802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathways of adenine nucleotide catabolism in primary rat muscle cultures.
    Zoref-Shani E; Shainberg A; Sperling O
    Biochim Biophys Acta; 1987 Dec; 926(3):287-95. PubMed ID: 2825800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy metabolism in adenosine deaminase-inhibited human erythrocytes.
    Buc HA; Thuillier L; Hamet M; Garreau F; Moncion A; PĂ©rignon JL
    Clin Chim Acta; 1986 Apr; 156(1):61-9. PubMed ID: 3486057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Platelet AMP deaminase. Purification and kinetic studies.
    Ashby B; Holmsen H
    J Biol Chem; 1981 Oct; 256(20):10519-23. PubMed ID: 7287721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stepwise isolation and properties of unstable Chinese hamster cell variants that overproduce adenylate deaminase.
    Debatisse M; Berry M; Buttin G
    Mol Cell Biol; 1982 Nov; 2(11):1346-53. PubMed ID: 7162515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The deamination of adenosine and adenosine monophosphate in Plasmodium falciparum-infected human erythrocytes: in vitro use of 2'deoxycoformycin and AMP deaminase-deficient red cells.
    Roth E; Ogasawara N; Schulman S
    Blood; 1989 Aug; 74(3):1121-5. PubMed ID: 2665862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic properties of 5'-AMP deaminase in platelet lysates.
    Holmsen H; Ostvold AC; Pimentel MA
    Thromb Haemost; 1977 Jun; 37(3):380-95. PubMed ID: 18810
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.