BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 6848668)

  • 1. On the phospholipid metabolism of glial cell primary cultures. II. Metabolism of 1-alkyl-glycerophosphoethanolamine during time course.
    Witter B; Gunawan J; Debuch H
    J Neurochem; 1983 Jan; 40(1):64-9. PubMed ID: 6848668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the phospholipid metabolism of glial cell primary cultures. III. Utilization of 1-alkenyl-glycerophosphoethanolamine (lysoplasmalogen).
    Illig HK; Witter B; Debuch H
    Neurochem Res; 1982 Oct; 7(10):1257-68. PubMed ID: 7155277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phospholipid metabolism of glial cell primary cultures, IV. Metabolism of 1-alkenyl-sn-glycero-3-phosphoethanolamine between 1 and 20 hours incubation.
    Illig HK; Witter B; Gunawan J; Ahrens P; Debuch H
    Hoppe Seylers Z Physiol Chem; 1982 Jul; 363(7):709-16. PubMed ID: 7129362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the phospholipid metabolism of glial cell primary cultures: cell characterization and their utilization of 1-alkyl-glycerophosphoethanolamine.
    Witter B; Debuch H
    J Neurochem; 1982 Apr; 38(4):1029-37. PubMed ID: 7062028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective acyl transfer in the reacylation of brain glycerophospholipids. Comparison of three acylation systems for 1-alk-1'-enylglycero-3-phosphoethanolamine, 1-acylglycero-3-phosphoethanolamine and 1-acylglycero-3-phosphocholine in rat brain microsomes.
    Masuzawa Y; Sugiura T; Sprecher H; Waku K
    Biochim Biophys Acta; 1989 Sep; 1005(1):1-12. PubMed ID: 2673414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective acylation of alkyllysophospholipids by docosahexaenoic acid in Ehrlich ascites cells.
    Masuzawa Y; Okano S; Nakagawa Y; Ojima A; Waku K
    Biochim Biophys Acta; 1986 Mar; 876(1):80-90. PubMed ID: 2936397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phospholipid metabolism in ehrlich ascites tumor cells. II. Turnover rate of ether phospholipids.
    Waku K; Nakazawa Y; Mori W
    J Biochem; 1976 Oct; 80(4):711-6. PubMed ID: 1010841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a lysophospholipase C that may be responsible for the biosynthesis of choline plasmalogens by Madin-Darby canine kidney cells.
    Strum JC; Daniel LW
    J Biol Chem; 1993 Dec; 268(34):25500-8. PubMed ID: 8244986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1-O-alkyl-linked glycerophospholipids of human neutrophils: distribution of arachidonate and other acyl residues in the ether-linked and diacyl species.
    Mueller HW; O'Flaherty JT; Greene DG; Samuel MP; Wykle RL
    J Lipid Res; 1984 Apr; 25(4):383-8. PubMed ID: 6427378
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turnover of eicosanoid precursor fatty acids among phospholipid classes and subclasses of cultured human umbilical vein endothelial cells.
    Takayama H; Kroll MH; Gimbrone MA; Schafer AI
    Biochem J; 1989 Mar; 258(2):427-34. PubMed ID: 2495792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arachidonyl transfer from diacyl phosphatidylcholine to ether phospholipids in rat platelets.
    Colard O; Breton M; Bereziat G
    Biochem J; 1984 Sep; 222(3):657-62. PubMed ID: 6435602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmalogen biosynthesis in Madin-Darby canine kidney cells: selectivity in the acylation of 1-alkyl-2-lyso-sn-glycero-3-phosphoethanolamine and the subsequent desaturation step.
    Blank ML; Lee TC; Cress EA; Fitzgerald V; Snyder F
    Arch Biochem Biophys; 1986 Nov; 251(1):55-60. PubMed ID: 3789745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporation and turnover of eicosapentaenoic and docosahexaenoic acids in human blood platelets in vitro.
    Croset M; Bayon Y; Lagarde M
    Biochem J; 1992 Jan; 281 ( Pt 2)(Pt 2):309-16. PubMed ID: 1531291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate specificity in plasmalogen biosynthesis. Desaturation of 1-O-hexadecyloxyethyl-2-acylglycero-3-phosphoethanolamine in developing rat brain.
    Schmid HH; Bandi PC; Madson TH; Baumann WJ
    Biochim Biophys Acta; 1977 Jul; 488(1):172-8. PubMed ID: 889857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic conversion of platelet-activating factor into ethanolamine plasmalogen in an amnion-derived cell line.
    Frenkel RA; Johnston JM
    J Biol Chem; 1992 Sep; 267(27):19186-91. PubMed ID: 1527040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymic synthesis of 1-alkyl-2-acyl-sn-glycero-3-phosphorylethanolamines by the CDP-ethanolamine: 1-radyl-2-acyl-sn-glycerol ethanolaminephosphotransferase from microsomal fraction of rat brain.
    Radominska-Pyrek A; Horrocks LA
    J Lipid Res; 1972 Sep; 13(5):580-7. PubMed ID: 5075504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arachidonic acid mobilization among phospholipids in murine mastocytoma P-815 cells: role of ether-linked phospholipids.
    Yoshioka S; Nakashima S; Okano Y; Nozawa Y
    J Lipid Res; 1986 Sep; 27(9):939-44. PubMed ID: 3097226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in the content and acyl group composition of glycerophospholipids of brain endothelial cells of the developing rat.
    Matheson DF; Oei R; Roots BI
    Neurochem Res; 1980 Jul; 5(7):683-95. PubMed ID: 7422055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transacylation of 1-O-alkyl-SN-glycero-3-phosphocholine (lyso platelet-activating factor) and 1-O-alkenyl-SN-glycero-3-phosphoethanolamine with docosahexaenoic acid (22:6 omega 3).
    Sugiura T; Masuzawa Y; Waku K
    Biochem Biophys Res Commun; 1985 Dec; 133(2):574-80. PubMed ID: 2935146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acyl-GPC and alkenyl/alkyl-GPC:acyl-CoA acyltransferases.
    Choy PC; Skrzypczak M; Lee D; Jay FT
    Biochim Biophys Acta; 1997 Sep; 1348(1-2):124-33. PubMed ID: 9370324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.