These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 6849060)

  • 1. The design of shielding windows using lead glass, lead acrylic, and plate glass.
    Aldrich JE; Andrew JW
    Radiology; 1983 Jan; 146(1):247. PubMed ID: 6849060
    [No Abstract]   [Full Text] [Related]  

  • 2. The Spallation Neutron Source (SNS) project: a fertile ground for radiation protection and shielding challenges.
    Gallmeier FX; Ferguson PD; Popova II; Iverson EB
    Radiat Prot Dosimetry; 2005; 115(1-4):23-32. PubMed ID: 16381678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of plate glass as shielding material in diagnostic radiologic installations.
    Trout ED; Kelley JP; Larson VL
    J Can Assoc Radiol; 1974 Sep; 25(3):173-7. PubMed ID: 4425265
    [No Abstract]   [Full Text] [Related]  

  • 4. Adjustable lead glass shielding device for use with an over-the-table x-ray tube.
    Eubig C; Groves BM; Davey G
    Radiology; 1978 Dec; 129(3):816-8. PubMed ID: 725069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Improved radiation protection for medical personnel in angiography and interventional radiology using permanent shielding devices in accordance with section 21 of the Radiography Regulation].
    Eder H
    Radiologe; 1995 Mar; 35(3):156-61. PubMed ID: 7761591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Evaluation of a leaden radiation protection barrier for dose reduction for the physician during CT fluoroscopy-guided interventions].
    Haipt F; Kirsch M; Hosten N
    Rofo; 2010 Jun; 182(6):512-7. PubMed ID: 19941247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A new radiation protection device for cardiologists active in interventional radiology].
    Utech A; Schulze R; Sievert H
    Z Kardiol; 1994 May; 83(5):336-9. PubMed ID: 8053241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility and potential effectiveness of partial-body shielding for personnel protection against ionizing radiation. USNRDL-TR-67-39.
    Shapiro ES
    Res Dev Tech Rep; 1967 Dec; ():1-49. PubMed ID: 5300786
    [No Abstract]   [Full Text] [Related]  

  • 9. Surface shield: device to reduce personnel radiation exposure.
    Young AT; Morin RL; Hunter DW; Nelson KL; Cardella JF; Castaneda-Zuniga WR; Amplatz K
    Radiology; 1986 Jun; 159(3):801-3. PubMed ID: 3704160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Criteria for establishing shielding of multi-detector computed tomography (MDCT) rooms.
    Verdun FR; Aroua A; Baechler S; Schmidt S; Trueb PR; Bochud FO
    Radiat Prot Dosimetry; 2010; 139(1-3):403-9. PubMed ID: 20215444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of a suspended radiation protection system versus standard lead apron for radiation exposure of a simulated interventionalist.
    Marichal DA; Anwar T; Kirsch D; Clements J; Carlson L; Savage C; Rees CR
    J Vasc Interv Radiol; 2011 Apr; 22(4):437-42. PubMed ID: 21354818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MCNPX vs. DORT for SNS shielding design studies.
    Popova II
    Radiat Prot Dosimetry; 2005; 115(1-4):559-63. PubMed ID: 16381785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiological assessment of the structural shielding adequacy of the radiotherapy facility at Korle-Bu Teaching Hospital, Accra, Ghana.
    Adu S; Emi-Reynolds G; Schandorf C; Darko EO; Gyekye PK
    Radiat Prot Dosimetry; 2012 Apr; 149(2):216-21. PubMed ID: 21561949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methodology for worker neutron exposure evaluation in the PDCF facility design.
    Scherpelz RI; Traub RJ; Pryor KH
    Radiat Prot Dosimetry; 2004; 110(1-4):725-9. PubMed ID: 15353738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiation safety design for the J-PARC Project.
    Nakashima H; Nakane Y; Masukawa F; Matsuda N; Oguri T; Nakano H; Sasamoto N; Shibata T; Suzuki T; Miura T; Numajiri M; Nakao N; Hirayama H; Sasaki S
    Radiat Prot Dosimetry; 2005; 115(1-4):564-8. PubMed ID: 16381786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Reduction of radiation exposure by protective measures in heart catheter studies and interventional cardiology].
    Prachar H; Dittel M; Kallinger W; Kundtner M; Enenkel W
    Z Kardiol; 1989 Apr; 78(4):271-5. PubMed ID: 2735088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of radiation shielding for the proton therapy facility at the National Cancer Center in Korea.
    Kim JW; Kwon JW; Lee J
    Radiat Prot Dosimetry; 2005; 115(1-4):271-5. PubMed ID: 16381727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Target station shielding issues at the spallation neutron source.
    Ferguson PD; Gallmeier FX; Iverson EB; Popova II
    Radiat Prot Dosimetry; 2005; 115(1-4):170-5. PubMed ID: 16381707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shielding design for the front end of the CERN SPL.
    Magistris M; Silari M; Vincke H
    Radiat Prot Dosimetry; 2005; 115(1-4):553-8. PubMed ID: 16381784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shielding for the upgraded Duke Free Electron Laser Laboratory.
    Vylet V
    Radiat Prot Dosimetry; 2005; 115(1-4):207-11. PubMed ID: 16381713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.