BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 6849396)

  • 41. Feeding induces lipid accumulation and increased Na+ transport in in vitro Necturus antrum.
    Rutten MJ; Moore CD; Delcore R; Cheung LY
    Am J Physiol; 1990 Dec; 259(6 Pt 1):G998-1009. PubMed ID: 2124420
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Conductive properties of papillary surface epithelium.
    Reeves WB
    Am J Physiol; 1994 Feb; 266(2 Pt 2):F259-65. PubMed ID: 8141326
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrophysiological effects of extracellular ATP on Necturus gallbladder epithelium.
    Cotton CU; Reuss L
    J Gen Physiol; 1991 May; 97(5):949-71. PubMed ID: 1713948
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cyclic AMP-induced chloride permeability in the apical membrane of Necturus gallbladder epithelium.
    Petersen KU; Reuss L
    J Gen Physiol; 1983 May; 81(5):705-29. PubMed ID: 6306141
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Diluting segment in kidney of dogfish shark. II. Electrophysiology of apical membranes and cellular resistances.
    Hebert SC; Friedman PA
    Am J Physiol; 1990 Feb; 258(2 Pt 2):R409-17. PubMed ID: 2309934
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Basolateral K+ conductances in surface epithelium of Necturus antrum: effects of Ca2+ and divalent cations.
    Soybel DI; Ashley SW; Cheung LY
    Am J Physiol; 1992 Apr; 262(4 Pt 1):G651-9. PubMed ID: 1566848
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrophysiological effects of mucosal Cl- removal in Necturus gallbladder epithelium.
    Stoddard JS; Reuss L
    Am J Physiol; 1989 Sep; 257(3 Pt 1):C568-78. PubMed ID: 2506759
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Exogenous surface-active phospholipid protects Necturus gastric mucosa against luminal acid and barrier-breaking agents.
    Kiviluoto T; Paimela H; Mustonen H; Kivilaakso E
    Gastroenterology; 1991 Jan; 100(1):38-46. PubMed ID: 1983849
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Active sodium transport and the electrophysiology of rabbit colon.
    Schultz SG; Frizzell RA; Nellans HN
    J Membr Biol; 1977 May; 33(3-4):351-84. PubMed ID: 864694
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Square wave pulse analysis of cellular and paracellular conductance pathways in Necturus gallbladder epithelium.
    Suzuki K; Kottra G; Kampmann L; Frömter E
    Pflugers Arch; 1982 Oct; 394(4):302-12. PubMed ID: 7145608
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transepithelial and cell membrane electrical resistances of the rabbit proximal convoluted tubule.
    Lapointe JY; Laprade R; Cardinal J
    Am J Physiol; 1984 Oct; 247(4 Pt 2):F637-49. PubMed ID: 6496692
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Time-dependent effects of aldosterone on sodium transport and cell membrane resistances in rabbit distal colon.
    Hoffmann B; Clauss W
    Pflugers Arch; 1989 Nov; 415(2):156-64. PubMed ID: 2594472
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of intracellular sodium and potassium iontophoresis on membrane potentials and resistances in toad urinary bladder.
    Narvarte J; Finn AL
    J Membr Biol; 1985; 84(1):1-7. PubMed ID: 3923199
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Voltage- and time dependence of apical membrane conductance during current clamp in Necturus gallbladder epithelium.
    Stoddard JS; Reuss L
    J Membr Biol; 1988 Jul; 103(2):191-204. PubMed ID: 2460628
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of aspirin on pathways of ion permeation in Necturus antrum: role of nutrient HCO3.
    Soybel DI; Davis MB; West AB
    Gastroenterology; 1992 Nov; 103(5):1475-85. PubMed ID: 1330800
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of changes in serosal chloride on electrical properties of toad urinary bladder.
    Narvarte J; Finn AL
    Am J Physiol; 1983 Jan; 244(1):C11-6. PubMed ID: 6849375
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrolyte transport by alkaline gland of little skate Raja erinacea.
    Smith PL
    Am J Physiol; 1985 Mar; 248(3 Pt 2):R346-52. PubMed ID: 2579590
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of apical cell membrane Na+ and K+ conductances of cortical collecting duct using microelectrode techniques.
    O'Neil RG; Sansom SC
    Am J Physiol; 1984 Jul; 247(1 Pt 2):F14-24. PubMed ID: 6331197
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Intracellular microelectrode characterization of the rabbit cortical collecting duct.
    Koeppen BM; Biagi BA; Giebisch GH
    Am J Physiol; 1983 Jan; 244(1):F35-47. PubMed ID: 6295184
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cell K activity in frog skin in the presence and absence of cell current.
    García-Díaz JF; Baxendale LM; Klemperer G; Essig A
    J Membr Biol; 1985; 85(2):143-58. PubMed ID: 3874286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.