These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 6849678)

  • 21. Unilateral damage to the ventral tegmental area facilitates feeding induced by stimulation of the contralateral ventral tegmental area.
    Trojniar W; Staszewska M
    Brain Res; 1994 Apr; 641(2):333-40. PubMed ID: 8012837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Opposite effects of prefrontal cortex and nucleus accumbens infusions of flupenthixol on stimulant-induced locomotion and brain stimulation reward.
    Duvauchelle CL; Levitin M; MacConell LA; Lee LK; Ettenberg A
    Brain Res; 1992 Mar; 576(1):104-10. PubMed ID: 1515903
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Note on temporal summation in the reward system.
    Gallistel CR
    J Comp Physiol Psychol; 1974 Nov; 87(5):870-5. PubMed ID: 4430752
    [No Abstract]   [Full Text] [Related]  

  • 24. The influence of amphetamine on preference for lateral hypothalamic versus prefrontal cortex or ventral tegmental area self-stimulation.
    Hand TH; Franklin KB
    Pharmacol Biochem Behav; 1983 May; 18(5):695-9. PubMed ID: 6344104
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Operant conditioning of rat navigation using electrical stimulation for directional cues and rewards.
    Lee MG; Jun G; Choi HS; Jang HS; Bae YC; Suk K; Jang IS; Choi BJ
    Behav Processes; 2010 Jul; 84(3):715-20. PubMed ID: 20417259
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A conditioned reinforcer did not help to maintain an operant conditioning in the absence of a primary reinforcer in horses.
    Lansade L; Calandreau L
    Behav Processes; 2018 Jan; 146():61-63. PubMed ID: 29158027
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in phosphorylation of CREB, ERK, and c-fos induction in rat ventral tegmental area, hippocampus and prefrontal cortex after conditioned place preference induced by chemical stimulation of lateral hypothalamus.
    Haghparast A; Taslimi Z; Ramin M; Azizi P; Khodagholi F; Hassanpour-Ezatti M
    Behav Brain Res; 2011 Jun; 220(1):112-8. PubMed ID: 21295078
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inactivation of dorsolateral striatum enhances sensitivity to changes in the action-outcome contingency in instrumental conditioning.
    Yin HH; Knowlton BJ; Balleine BW
    Behav Brain Res; 2006 Jan; 166(2):189-96. PubMed ID: 16153716
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lack of sensitization or tolerance to the facilitating effect of ventral tegmental area morphine on lateral hypothalamic brain stimulation reward.
    Bauco P; Wang Y; Wise RA
    Brain Res; 1993 Jul; 617(2):303-8. PubMed ID: 8402158
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dissociating the determinants of self-stimulation.
    Atrens DM; Sinden JD; Hunt GE
    Physiol Behav; 1983 Dec; 31(6):787-99. PubMed ID: 6665069
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mapping the substrate for brain stimulation reward by means of current-number trade-off functions.
    Forgie ML; Shizgal P
    Behav Neurosci; 1993 Jun; 107(3):506-24. PubMed ID: 8392350
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemical stimulation of the lateral hypothalamus induces conditioned place preference in rats: Involvement of OX1 and CB1 receptors in the ventral tegmental area.
    Taslimi Z; Haghparast A; Hassanpour-Ezatti M; Safari MS
    Behav Brain Res; 2011 Feb; 217(1):41-6. PubMed ID: 20937330
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Competition between lateral hypothalamus and ventromedial tegmentum in electrical self-stimulation in the rat.
    Miliaressis TE; St-Laurent J; Cardo B
    Can J Psychol; 1974 Jun; 28(2):165-75. PubMed ID: 4426007
    [No Abstract]   [Full Text] [Related]  

  • 34. Preference paradigm: provides better self-stimulation reward discrimination than a rate-dependent paradigm.
    Mason PA; Milner PM; Miousse R
    Behav Neural Biol; 1985 Nov; 44(3):521-9. PubMed ID: 4084194
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Behavioral effects of stimulating positive reward sites in the central tegmentum of rhesus monkeys.
    Maxim PE
    Physiol Behav; 1979 Aug; 23(2):333-9. PubMed ID: 116261
    [No Abstract]   [Full Text] [Related]  

  • 36. Brain stimulation, reinforcement and behavior.
    Saint-Laurent J; Beaugrand J
    Rev Can Biol; 1972; 31():Suppl:193-213. PubMed ID: 5052325
    [No Abstract]   [Full Text] [Related]  

  • 37. Strength-duration characteristics of lateral hypothalamic and periaqueductal gray reward-path neurons.
    Milner PM; Laferrière A
    Physiol Behav; 1982 Nov; 29(5):857-63. PubMed ID: 6984194
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-stimulation of the MFB following parabrachial lesions.
    Waraczynski M; Shizgal P
    Physiol Behav; 1995 Sep; 58(3):559-66. PubMed ID: 8587965
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of brain stimulation reward in the medial prefrontal cortex: facilitation by prior electrical stimulation of the sulcal prefrontal cortex.
    Robertson A; Laferrière A; Milner PM
    Physiol Behav; 1982 May; 28(5):869-72. PubMed ID: 7100287
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cholinergic antagonists in ventral tegmentum elevate thresholds for lateral hypothalamic and brainstem self-stimulation.
    Kofman O; Yeomans JS
    Pharmacol Biochem Behav; 1988 Nov; 31(3):547-59. PubMed ID: 3251239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.