These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 6849884)

  • 1. Structural changes in the lens proteins of hereditary cataracts monitored by Raman spectroscopy.
    Itoh K; Ozaki Y; Mizuno A; Iriyama K
    Biochemistry; 1983 Apr; 22(8):1773-8. PubMed ID: 6849884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An application of laser Raman spectroscopy to the study of a hereditary cataractous lens; on the Raman band for a diagnostic marker of cataractous signatures.
    Iriyama K; Mizuno A; Ozaki Y; Itoh K; Matsuzaki H
    Curr Eye Res; 1982-1983; 2(7):489-92. PubMed ID: 7182109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman spectroscopic study of age-related structural changes in the lens proteins of an intact mouse lens.
    Ozaki Y; Mizuno A; Itoh K; Yoshiura M; Iwamoto T; Iriyama K
    Biochemistry; 1983 Dec; 22(26):6254-9. PubMed ID: 6661433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aging and cataractous process of the lens detected by laser Raman spectroscopy.
    Mizuno A; Ozaki Y
    Lens Eye Toxic Res; 1991; 8(2-3):177-87. PubMed ID: 1832955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman spectroscopic evidence for the microenvironmental change of some tyrosine residues of lens proteins in cold cataract.
    Mizuno A; Ozaki Y; Itoh K; Matsushima S; Iriyama K
    Biochem Biophys Res Commun; 1984 Mar; 119(3):989-94. PubMed ID: 6712681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inter- and intramolecular disulfide bond formation and related structural changes in the lens proteins. A Raman spectroscopic study in vivo of lens aging.
    Ozaki Y; Mizuno A; Itoh K; Iriyama K
    J Biol Chem; 1987 Nov; 262(32):15545-51. PubMed ID: 3680210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1H-NMR and raman studies on perforating trauma-induced cataract formation in a mouse lens.
    Nakamura K; Jung YM; Era S; Sogami M; Ozaki Y; Takasaki A
    Biochim Biophys Acta; 2000 Mar; 1474(1):23-30. PubMed ID: 10699486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alteration of lens sulfhydryl groups induced by oxidative stress: Raman spectroscopic study of hydrogen peroxide-treated rat lens.
    Tomohiro M; Mizuno A
    Jpn J Ophthalmol; 1995; 39(2):130-6. PubMed ID: 8538068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser Raman spectroscopic study of hereditary cataractous lenses in ICR/f-strain rat.
    Mizuno A; Kanematsu EH; Suzuki H; Ihara N
    Jpn J Ophthalmol; 1988; 32(3):281-7. PubMed ID: 3230713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-destructive analysis of the conformational changes in human lens lipid and protein structures of the immature cataracts associated with glaucoma.
    Lin SY; Li MJ; Liang RC; Lee SM
    Spectrochim Acta A Mol Biomol Spectrosc; 1998 Sep; 54A(10):1509-17. PubMed ID: 9807241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alteration of lens disulfide bonds in newly developed hereditary cataract rat.
    Mizuno A; Shumiya S; Toshima S; Nakano T
    Jpn J Ophthalmol; 1992; 36(4):417-25. PubMed ID: 1289618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Raman study of disulfide and sulfhydryl in the Emory mouse cataract.
    DeNagel DC; Bando M; Yu NT; Kuck JF
    Invest Ophthalmol Vis Sci; 1988 May; 29(5):823-6. PubMed ID: 3366572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Galactose-induced cataract in rat: Raman detection of sulfhydryl decrease and water increase along an equatorial diameter.
    Cai MZ; Kuck JF; Yu NT
    Exp Eye Res; 1989 Oct; 49(4):531-41. PubMed ID: 2806422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of structural changes in the cataractous rat lens using Raman spectroscopy.
    Horikiri K; Nakajima H; Matsuura T; Narama I; Fujimoto Y; Ozaki Y
    Jikken Dobutsu; 1992 Apr; 41(2):225-30. PubMed ID: 1577084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autophagy and UPR in alpha-crystallin mutant knock-in mouse models of hereditary cataracts.
    Andley UP; Goldman JW
    Biochim Biophys Acta; 2016 Jan; 1860(1 Pt B):234-9. PubMed ID: 26071686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disulfide bond formation in the eye lens.
    Yu NT; DeNagel DC; Pruett PL; Kuck JF
    Proc Natl Acad Sci U S A; 1985 Dec; 82(23):7965-8. PubMed ID: 3865209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucocorticoid-induced cataract in chick embryo monitored by Raman spectroscopy.
    Mizuno A; Nishigori H; Iwatsuru M
    Invest Ophthalmol Vis Sci; 1989 Jan; 30(1):132-7. PubMed ID: 2912907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [FTRaman and FTIR spectroscopy in lens with senile cataract].
    Chen C; Su X; Zhang X
    Zhonghua Yan Ke Za Zhi; 1997 Sep; 33(5):337-9. PubMed ID: 10451975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular aging of lens crystallins and the life expectancy of the animal. Age-related protein structural changes studied in situ by Raman spectroscopy.
    Ozaki Y; Mizuno A
    Biochim Biophys Acta; 1992 Jun; 1121(3):245-51. PubMed ID: 1627601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein profiles in cortical and nuclear regions of aged human donor lenses: A confocal Raman microspectroscopic and imaging study.
    Vrensen GFJM; Otto C; Lenferink A; Liszka B; Montenegro GA; Barraquer RI; Michael R
    Exp Eye Res; 2016 Apr; 145():100-109. PubMed ID: 26611157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.