These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 6852132)

  • 61. Ultrasonic and biochemical evaluation of human diabetic lens.
    Raitelaitiene R; Paunksnis A; Ivanov L; Kurapkiene S
    Medicina (Kaunas); 2005; 41(8):641-8. PubMed ID: 16160411
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Age-related accumulation of 1-methyl-1,2,3,4-tetrahydro-beta-carboline-3- carboxylic acid in human lens.
    Manabe S; Yuan J; Takahashi T; Urban RC
    Exp Eye Res; 1996 Aug; 63(2):179-86. PubMed ID: 8983975
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [Significance of the cation pump for the shift of fluid in the lens and the permeability cataract].
    Pau H; Kuhlmann R; Schröter I
    Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1973 Mar; 186(3):165-74. PubMed ID: 4540443
    [No Abstract]   [Full Text] [Related]  

  • 64. Molecular signature for senile and complicated cataracts derived from analysis of sumoylation enzymes and their substrates in human cataract lenses.
    Liu FY; Fu JL; Wang L; Nie Q; Luo Z; Hou M; Yang Y; Gong XD; Wang Y; Xiao Y; Xiang J; Hu X; Zhang L; Wu M; Chen W; Cheng B; Luo L; Zhang X; Liu X; Zheng D; Huang S; Liu Y; Li DW
    Aging Cell; 2020 Oct; 19(10):e13222. PubMed ID: 32827359
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The Emory mouse cataract: increased accumulation of calcium during cataractogenesis.
    Kuck JF; Kuck KD
    Lens Eye Toxic Res; 1989; 6(4):853-62. PubMed ID: 2487287
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Lens GSH depletion and electrolyte changes preceding cataracts induced by buthionine sulfoximine in suckling mice.
    Calvin HI; von Hagen S; Hess JL; Patel SA; Fu SC
    Exp Eye Res; 1992 Apr; 54(4):621-6. PubMed ID: 1623947
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The bovine lens as an ion-exchanger: a comparison with ion levels in human cataractous lenses.
    Duncan G; Bushell AR
    Exp Eye Res; 1976 Sep; 23(3):341-53. PubMed ID: 976375
    [No Abstract]   [Full Text] [Related]  

  • 68. Sodium and rubidium fluxes in rat red blood cells.
    Beaugé LA; Ortíz O
    J Physiol; 1971 Nov; 218(3):533-49. PubMed ID: 5133948
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP
    Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Sodium accumulation in cataractous lenses].
    Andrée G
    Ber Zusammenkunft Dtsch Ophthalmol Ges; 1970; 70():354-8. PubMed ID: 5537494
    [No Abstract]   [Full Text] [Related]  

  • 71. Structural characterization of lipid membranes from clear and cataractous human lenses.
    Borchman D; Lamba OP; Yappert MC
    Exp Eye Res; 1993 Aug; 57(2):199-208. PubMed ID: 8405186
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Activities of ascorbate free radical reductase and H2O2-dependent NADH oxidation in senile cataractous human lenses.
    Bando M; Obazawa H
    Exp Eye Res; 1990 Jun; 50(6):779-86. PubMed ID: 2373170
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Pyridine nucleotides in normal and cataractous human lenses.
    Stewart A; Augusteyn RC
    Exp Eye Res; 1984 Sep; 39(3):307-15. PubMed ID: 6499953
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Protein changes in the human lens during development of senile nuclear cataract.
    Kramps HA; Hoenders HJ; Wollensak J
    Biochim Biophys Acta; 1976 May; 434(1):32-43. PubMed ID: 938670
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effect of glutathione depletion on cation transport and metabolism in the rabbit lens.
    Reddy VN; Garadi R; Chakrapani B; Giblin FJ
    Ophthalmic Res; 1988; 20(3):191-9. PubMed ID: 3186192
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [Na-K-ATPase activity in the normal aging crystalline lens and in senile cataract].
    Nordmann J; Klethi J
    Arch Ophtalmol (Paris); 1976; 36(6-7):523-8. PubMed ID: 136953
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Ouabain-sensitive 86Rb(K) influx is linked to transepithelial Na transport in pig kidney cell line.
    Sanders MJ; Misfeldt DS
    Biochim Biophys Acta; 1982 Mar; 685(3):383-5. PubMed ID: 7066317
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Peroxide-induced effects on lens cation transport following inhibition of glutathione reductase activity in vitro.
    Giblin FJ; McCready JP; Schrimscher L; Reddy VN
    Exp Eye Res; 1987 Jul; 45(1):77-91. PubMed ID: 2820773
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Supplementing glucose metabolism in human senile cataracts.
    Cheng HM; Chylack LT; von Saltza I
    Invest Ophthalmol Vis Sci; 1981 Dec; 21(6):812-8. PubMed ID: 6458578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.