These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 6852686)

  • 21. Effect of monensin on breakdown of protein by ruminal microorganisms in vitro.
    Whetstone HD; Davis CL; Bryant MP
    J Anim Sci; 1981 Sep; 53(3):803-9. PubMed ID: 7319956
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of pH and energy spilling on bacterial protein synthesis by carbohydrate-limited cultures of mixed rumen bacteria.
    Strobel HJ; Russell JB
    J Dairy Sci; 1986 Nov; 69(11):2941-7. PubMed ID: 3805466
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Initial pH as a determinant of cellulose digestion rate by mixed ruminal microorganisms in vitro.
    Mouriño F; Akkarawongsa R; Weimer PJ
    J Dairy Sci; 2001 Apr; 84(4):848-59. PubMed ID: 11352162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of ruminal cellulolytic bacterial concentrations on in situ digestion of forage cellulose.
    Dehority BA; Tirabasso PA
    J Anim Sci; 1998 Nov; 76(11):2905-11. PubMed ID: 9856401
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of varying dietary starch and fiber levels and inoculum source (mule deer vs. dairy cow) on simulated rumen fermentation characteristics.
    Brooks MA; Harvey RM; Johnson NF; Koutsos EA; Kerley MS
    Zoo Biol; 2014; 33(2):110-20. PubMed ID: 24395284
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH?
    Russell JB; Wilson DB
    J Dairy Sci; 1996 Aug; 79(8):1503-9. PubMed ID: 8880476
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rumen microbial attachment and degradation of plant cell walls.
    Akin DE; Barton FE
    Fed Proc; 1983 Jan; 42(1):114-21. PubMed ID: 6848373
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro growth and starch digestion by Entodinium exiguum as influenced by the presence or absence of live bacteria.
    Fondevila M; Dehority BA
    J Anim Sci; 2001 Sep; 79(9):2465-71. PubMed ID: 11583435
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The metabolism of acetate by rumen microorganisms.
    Emmanuel B; Milligan LP; Turner BV
    Can J Microbiol; 1974 Feb; 20(2):183-5. PubMed ID: 4822786
    [No Abstract]   [Full Text] [Related]  

  • 30. [Effect of cobalt and vitamin B 12 on growth and survival of rumen ciliates in vitro as a function of bacterial population].
    Bonhomme A; Durand M; Quintana C; Halpern S
    Reprod Nutr Dev (1980); 1982; 22(1A):107-22. PubMed ID: 6818641
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of urea, biuret and starch on amino acid patterns in ruminal bacteria and blood plasma and on nitrogen balance of steers fed high fiber purified diets.
    Slyter LL; Oltjen RR; Williams EE; Wilson RL
    J Nutr; 1971 Jul; 101(7):839-46. PubMed ID: 5092233
    [No Abstract]   [Full Text] [Related]  

  • 32. The mechanism of passage of endogenous urea through the rumen wall and the role of ureolytic epithelial bacteria in the urea flux.
    Cheng KJ; Wallace RJ
    Br J Nutr; 1979 Nov; 42(3):553-7. PubMed ID: 508714
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Short communication: Comparison of pH, volatile fatty acids, and microbiome of rumen samples from preweaned calves obtained via cannula or stomach tube.
    Terré M; Castells L; Fàbregas F; Bach A
    J Dairy Sci; 2013 Aug; 96(8):5290-4. PubMed ID: 23706486
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of acetohydroxamic acid on growth and volatile fatty acid production by rumen bacteria.
    Chan CC; Jones GA
    Can J Microbiol; 1973 Jan; 19(1):27-33. PubMed ID: 4734379
    [No Abstract]   [Full Text] [Related]  

  • 35. The effect of pH on maximum bacterial growth rate and its possible role as a determinant of bacterial competition in the rumen.
    Russell JB; Sharp WM; Baldwin RL
    J Anim Sci; 1979 Feb; 48(2):251-5. PubMed ID: 43321
    [No Abstract]   [Full Text] [Related]  

  • 36. Adhesion of rumen bacteria to alkali-treated plant stems.
    Latham MJ; Hobbs DG; Harris PJ
    Ann Rech Vet; 1979; 10(2-3):244-5. PubMed ID: 575276
    [No Abstract]   [Full Text] [Related]  

  • 37. Rumen development in lambs. I. Microbial digestion of starch and cellulose.
    Poe SE; Ely DG; Mitchell GE; Deweese WP; Glimp HA
    J Anim Sci; 1971 Apr; 32(4):740-3. PubMed ID: 5571558
    [No Abstract]   [Full Text] [Related]  

  • 38. Comparison of the production rates of bacteria in the rumen estimated by using labelled live and formaldehyde treated mixed bacterial cells.
    Singh UB; Verma DN; Mehra UR; Ranjhan SK
    Experientia; 1977 May; 33(5):587-9. PubMed ID: 558908
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of ammonia concentration of rumen microbial protein production in vitro.
    Satter LD; Slyter LL
    Br J Nutr; 1974 Sep; 32(2):199-208. PubMed ID: 4472574
    [No Abstract]   [Full Text] [Related]  

  • 40. Application of flowcell technology for monitoring biofilm development and cellulose degradation in leachate and rumen systems.
    O'Sullivan C; Burrell PC; Pasmore M; Clarke WP; Blackall LL
    Bioresour Technol; 2009 Jan; 100(1):492-6. PubMed ID: 18692390
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.