These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 6853473)

  • 21. [Activation of the caffeine center of the sarcoplasmic reticulum at a reduced concentration of magnesium ions].
    Ritov VB; Budina NB; Vekshina OM
    Biull Eksp Biol Med; 1985 Jan; 99(1):53-5. PubMed ID: 3967072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation and characterization of longitudinal tubules of sarcoplasmic reticulum from fast skeletal muscle.
    Chu A; Saito A; Fleischer S
    Arch Biochem Biophys; 1987 Oct; 258(1):13-23. PubMed ID: 2444161
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid kinetic studies of active Ca2+ transport in sarcoplasmic reticulum.
    Chiu VC; Haynes DH
    J Membr Biol; 1980 Oct; 56(3):219-39. PubMed ID: 6450287
    [No Abstract]   [Full Text] [Related]  

  • 24. Calcium transport by sarcoplasmic reticulum of skeletal muscle is inhibited by antibodies against the 53-kilodalton glycoprotein of the sarcoplasmic reticulum membrane.
    Kutchai H; Campbell KP
    Biochemistry; 1989 May; 28(11):4830-9. PubMed ID: 2527558
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural and functional degradation of Ca2+:Mg2+-ATPase rich sarcoplasmic reticulum vesicles photosensitized by erythrosin B.
    Watson BD; Haynes DH
    Chem Biol Interact; 1982 Sep; 41(3):313-25. PubMed ID: 6125269
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of monovalent and divalent cations on the ATP-dependent Ca2+-binding and phosphorylation during the reaction cycle of the sarcoplasmic reticulum Ca2+-transport ATPase.
    Medda P; Fassold E; Hasselbach W
    Eur J Biochem; 1987 Jun; 165(2):251-9. PubMed ID: 2954819
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A thermal transition of passive calcium efflux in fragmented sarcoplasmic reticulum.
    Millman MS
    Membr Biochem; 1980; 3(4):271-90. PubMed ID: 7219191
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of Mg2+ on cardiac muscle function: Is CaATP the substrate for priming myofibril cross-bridge formation and Ca2+ reuptake by the sarcoplasmic reticulum?
    Smith GA; Vandenberg JI; Freestone NS; Dixon HB
    Biochem J; 2001 Mar; 354(Pt 3):539-51. PubMed ID: 11237858
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism of Ca2+ transport by Ca2+-Mg2+-ATPase pump: analysis of major states and pathways.
    Haynes DH
    Am J Physiol; 1983 Jan; 244(1):G3-12. PubMed ID: 6129804
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heavy metals induce rapid calcium release from sarcoplasmic reticulum vesicles isolated from skeletal muscle.
    Abramson JJ; Trimm JL; Weden L; Salama G
    Proc Natl Acad Sci U S A; 1983 Mar; 80(6):1526-30. PubMed ID: 6572915
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The heavy metal ions Ag+ and Hg2+ trigger calcium release from cardiac sarcoplasmic reticulum.
    Prabhu SD; Salama G
    Arch Biochem Biophys; 1990 Feb; 277(1):47-55. PubMed ID: 2137685
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of compound 48/80 on the Ca2+ release by reversal of the Ca2+ pump and by the Ca2+ channel of sarcoplasmic reticulum membranes.
    Vale MG
    Arch Biochem Biophys; 1990 Jun; 279(2):275-80. PubMed ID: 2161641
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vanadate oligomer inhibition of passive and active Ca2+ translocation by the Ca2+ pump of sarcoplasmic reticulum.
    Aureliano M
    J Inorg Biochem; 2000 May; 80(1-2):145-7. PubMed ID: 10885476
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solvent-dependent influences on skeletal muscle sarcoplasmic reticulum calcium uptake and release.
    Chu A; Brazeau GA
    Toxicol Appl Pharmacol; 1994 Mar; 125(1):142-8. PubMed ID: 8128489
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Release of Ca2+ ions from the sarcoplasmic reticulum of skeletal muscles after treatment with caffeine].
    Men'shikova EV; Ritov VB
    Biokhimiia; 1986 Apr; 51(4):603-11. PubMed ID: 2423142
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative studies on Ca2+- and Mg2+-binding of sarcoplasmic reticulum and chromaffin granule membranes.
    Balzer H; Khan AR; Ristić-Radivojević S
    Biochem Pharmacol; 1984 Jan; 33(1):21-9. PubMed ID: 6704140
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Magnesium and manganese ions modulate Ca2+ uptake and its energetic coupling in sarcoplasmic reticulum.
    Gomes da Costa A; Madeira VM
    Arch Biochem Biophys; 1986 Aug; 249(1):199-206. PubMed ID: 2943223
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of calcium release from sarcoplasmic reticulum of slow and fast twitch muscles.
    Lee YS; Ondrias K; Duhl AJ; Ehrlich BE; Kim DH
    J Membr Biol; 1991 Jun; 122(2):155-63. PubMed ID: 1716686
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrical pump currents generated by the Ca2+-ATPase of sarcoplasmic reticulum vesicles adsorbed on black lipid membranes.
    Hartung K; Grell E; Hasselbach W; Bamberg E
    Biochim Biophys Acta; 1987 Jun; 900(2):209-20. PubMed ID: 2954585
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism of chloride-dependent release of Ca2+ in the sarcoplasmic reticulum of rabbit skeletal muscle.
    Sukhareva M; Morrissette J; Coronado R
    Biophys J; 1994 Aug; 67(2):751-65. PubMed ID: 7948689
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.