BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 6853720)

  • 21. Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis.
    Knowles M; Gatzy J; Boucher R
    N Engl J Med; 1981 Dec; 305(25):1489-95. PubMed ID: 7300874
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcellular sodium transport in cultured cystic fibrosis human nasal epithelium.
    Willumsen NJ; Boucher RC
    Am J Physiol; 1991 Aug; 261(2 Pt 1):C332-41. PubMed ID: 1872375
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Na+ transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation.
    Boucher RC; Stutts MJ; Knowles MR; Cantley L; Gatzy JT
    J Clin Invest; 1986 Nov; 78(5):1245-52. PubMed ID: 3771796
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Abnormal ion permeation through cystic fibrosis respiratory epithelium.
    Knowles MR; Stutts MJ; Spock A; Fischer N; Gatzy JT; Boucher RC
    Science; 1983 Sep; 221(4615):1067-70. PubMed ID: 6308769
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of topical benzamil and amiloride on nasal potential difference in cystic fibrosis.
    Rodgers HC; Knox AJ
    Eur Respir J; 1999 Sep; 14(3):693-6. PubMed ID: 10543294
    [TBL] [Abstract][Full Text] [Related]  

  • 26. cAMP activation of CF-affected Cl- conductance in both cell membranes of an absorptive epithelium.
    Reddy MM; Quinton PM
    J Membr Biol; 1992 Oct; 130(1):49-62. PubMed ID: 1281885
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amiloride-insensitive nasal potential difference varies with the menstrual cycle in cystic fibrosis.
    Sweezey NB; Smith D; Corey M; Ellis L; Carpenter S; Tullis DE; Durie P; O'Brodovich HM
    Pediatr Pulmonol; 2007 Jun; 42(6):519-24. PubMed ID: 17469152
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo nasal potential difference: techniques and protocols for assessing efficacy of gene transfer in cystic fibrosis.
    Knowles MR; Paradiso AM; Boucher RC
    Hum Gene Ther; 1995 Apr; 6(4):445-55. PubMed ID: 7542031
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chloride secretory response of cystic fibrosis human airway epithelia. Preservation of calcium but not protein kinase C- and A-dependent mechanisms.
    Boucher RC; Cheng EH; Paradiso AM; Stutts MJ; Knowles MR; Earp HS
    J Clin Invest; 1989 Nov; 84(5):1424-31. PubMed ID: 2478586
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modification of nasal membrane potential difference with inhaled amiloride and loperamide in the cystic fibrosis (CF) mouse.
    Ghosal S; Taylor CJ; McGaw J
    Thorax; 1996 Dec; 51(12):1229-32. PubMed ID: 8994520
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shunt resistance and ion permeabilities in normal and cystic fibrosis airway epithelia.
    Willumsen NJ; Boucher RC
    Am J Physiol; 1989 May; 256(5 Pt 1):C1054-63. PubMed ID: 2719095
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Apical membrane potassium and chloride permeabilities in surface cells of rabbit descending colon epithelium.
    Wills NK
    J Physiol; 1985 Jan; 358():433-45. PubMed ID: 2580086
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exercise inhibits epithelial sodium channels in patients with cystic fibrosis.
    Hebestreit A; Kersting U; Basler B; Jeschke R; Hebestreit H
    Am J Respir Crit Care Med; 2001 Aug; 164(3):443-6. PubMed ID: 11500347
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isobutylmethylxanthine fails to stimulate chloride secretion in cystic fibrosis airway epithelia.
    Grubb B; Lazarowski E; Knowles M; Boucher R
    Am J Respir Cell Mol Biol; 1993 Apr; 8(4):454-60. PubMed ID: 7682824
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Defective fluid transport by cystic fibrosis airway epithelia.
    Smith JJ; Karp PH; Welsh MJ
    J Clin Invest; 1994 Mar; 93(3):1307-11. PubMed ID: 8132771
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct demonstration of high transepithelial chloride-conductance in normal human sweat duct which is absent in cystic fibrosis.
    Bijman J; Frömter E
    Pflugers Arch; 1986; 407 Suppl 2():S123-7. PubMed ID: 3822760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insights into the variability of nasal potential difference, a biomarker of CFTR activity.
    Kyrilli S; Henry T; Wilschanski M; Fajac I; Davies JC; Jais JP; Sermet-Gaudelus I
    J Cyst Fibros; 2020 Jul; 19(4):620-626. PubMed ID: 31699569
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Polarized distribution of HCO3- transport in human normal and cystic fibrosis nasal epithelia.
    Paradiso AM; Coakley RD; Boucher RC
    J Physiol; 2003 Apr; 548(Pt 1):203-18. PubMed ID: 12562898
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of different chloride and glucose solutions on nasal potential difference.
    House HH; Middleton PG
    Pediatr Pulmonol; 2009 Jul; 44(7):645-8. PubMed ID: 19514053
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Persistence of abnormal chloride ion permeability in cystic fibrosis nasal epithelial cells in heterologous culture.
    Yankaskas JR; Knowles MR; Gatzy JT; Boucher RC
    Lancet; 1985 Apr; 1(8435):954-6. PubMed ID: 2859414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.