These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 6854321)

  • 1. Ceramide synthesis from free fatty acids in rat brain: function of NADPH and substrate specificity.
    Singh I
    J Neurochem; 1983 Jun; 40(6):1565-70. PubMed ID: 6854321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alpha-hydroxylation and oxidation of lignoceric acid in brain: the role of heat-stable and heat-labile factors.
    Shimeno H; Wali A; Kishimoto Y
    Neurochem Res; 1984 Feb; 9(2):181-94. PubMed ID: 6738789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel synthesis of ceramide from lignoceric acid and sphingosine by rat brain preparation; the amide formation requires a pyridine nucleotide.
    Singh I; Kishimoto Y
    Biochem Biophys Res Commun; 1978 Jun; 82(4):1287-93. PubMed ID: 29620
    [No Abstract]   [Full Text] [Related]  

  • 4. Further characterization of the heat-stable factor in the alpha-hydroxylation and oxidation of lignoceric acid in brain: effect of acidic amino acids and hexose-phosphates on brain fatty acid metabolism.
    Shimeno H; Okamura N; Wali A; Kishimoto Y
    Arch Biochem Biophys; 1983 May; 223(1):95-106. PubMed ID: 6859867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of ceramides and cerebrosides containing both alpha-hydroxy and nonhydroxy fatty acids from lignoceroyl-CoA by rat brain microsomes.
    Akanuma H; Kishimoto Y
    J Biol Chem; 1979 Feb; 254(4):1050-60. PubMed ID: 762114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alpha hydroxylation of lignoceric acid in brain. Subcellular localization of alpha hydroxylation and the requirement for heat-stable and heat-labile factors and sphingosine.
    Singh I; Kishimoto Y
    J Biol Chem; 1979 Aug; 254(16):7698-704. PubMed ID: 38244
    [No Abstract]   [Full Text] [Related]  

  • 7. Stearoyl-CoA desaturase-1 deficiency reduces ceramide synthesis by downregulating serine palmitoyltransferase and increasing beta-oxidation in skeletal muscle.
    Dobrzyn A; Dobrzyn P; Lee SH; Miyazaki M; Cohen P; Asilmaz E; Hardie DG; Friedman JM; Ntambi JM
    Am J Physiol Endocrinol Metab; 2005 Mar; 288(3):E599-607. PubMed ID: 15562249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ceramide synthesis in rat brain: characterization of the synthesis requiring pyridine nucleotide.
    Singh I; Kishimoto Y
    Arch Biochem Biophys; 1980 Jun; 202(1):93-100. PubMed ID: 7396538
    [No Abstract]   [Full Text] [Related]  

  • 9. Glutamate formed from lignoceric acid by rat brain preparation in the presence of pyridine nucleotide and cytosolic factors: a brain-specific oxidation of very long chain fatty acids.
    Uda M; Singh I; Kishimoto Y
    Biochemistry; 1981 Mar; 20(5):1295-300. PubMed ID: 7225329
    [No Abstract]   [Full Text] [Related]  

  • 10. The human FA2H gene encodes a fatty acid 2-hydroxylase.
    Alderson NL; Rembiesa BM; Walla MD; Bielawska A; Bielawski J; Hama H
    J Biol Chem; 2004 Nov; 279(47):48562-8. PubMed ID: 15337768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationships between the NAD(P) redox state, fatty acid oxidation, and inner membrane permeability in rat liver mitochondria.
    Lê-Quôc D; Lê-Quôc K
    Arch Biochem Biophys; 1989 Sep; 273(2):466-78. PubMed ID: 2774563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observations on the biosynthesis of rat brain ceramide and cerebroside in vivo.
    Carter TP; Kanfer J
    J Neurochem; 1974 Sep; 23(3):589-94. PubMed ID: 4424067
    [No Abstract]   [Full Text] [Related]  

  • 13. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction.
    Berridge MV; Tan AS
    Arch Biochem Biophys; 1993 Jun; 303(2):474-82. PubMed ID: 8390225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mouse brain uptake and metabolism of stearic acid.
    Gozlan-Devillierre N; Baumann NA; Bourre JM
    Biochimie; 1976 Nov; 58(9):1129-33. PubMed ID: 999952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of cyclodextrins on the solubilization of lignoceric acid, ceramide, and cerebroside, and on the enzymatic reactions involving these compounds.
    Singh I; Kishimoto Y
    J Lipid Res; 1983 May; 24(5):662-5. PubMed ID: 6875391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alpha-oxidation of 3-methyl-substituted fatty acids in rat liver.
    Huang S; Van Veldhoven PP; Vanhoutte F; Parmentier G; Eyssen HJ; Mannaerts GP
    Arch Biochem Biophys; 1992 Jul; 296(1):214-23. PubMed ID: 1318690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. alpha-Hydroxylation of fatty acids in brain. Substrate specificity and deuterium isotope effect.
    Murad S; Chen RH; Kishimoto Y
    J Biol Chem; 1977 Aug; 252(15):5206-10. PubMed ID: 885846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. alpha-Hydroxylation of fatty acids in brain: characterization of heat-labile factor.
    Singh I; Kishimoto Y
    J Neurochem; 1981 Aug; 37(2):388-91. PubMed ID: 7264665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo metabolism of ceramides in rat brain. Fatty acid replacement and esterification of ceramide.
    Okabe H; Kishimoto Y
    J Biol Chem; 1977 Oct; 252(20):7068-73. PubMed ID: 903352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain-specific ceramide synthesis activity: change during brain maturation and in jimpy mouse brain.
    Singh I; Kishimoto Y
    Brain Res; 1982 Jan; 232(2):500-5. PubMed ID: 7188035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.