These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 6854625)
1. Specificity of the Na+-dependent monocarboxylic acid transport pathway in rabbit renal brush border membranes. Nord EP; Wright SH; Kippen I; Wright EM J Membr Biol; 1983; 72(3):213-21. PubMed ID: 6854625 [TBL] [Abstract][Full Text] [Related]
2. Pathways for carboxylic acid transport by rabbit renal brush border membrane vesicles. Nord E; Wright SH; Kippen I; Wright EM Am J Physiol; 1982 Nov; 243(5):F456-62. PubMed ID: 7137347 [TBL] [Abstract][Full Text] [Related]
3. Characterization of sodium and pyruvate interactions of the two carrier systems specific of mono- and di- or tricarboxylic acids by renal brush-border membrane vesicles. Mengual R; Claude-Schlageter MH; Poiree JC; Yagello M; Sudaka P J Membr Biol; 1989 Jun; 108(3):197-205. PubMed ID: 2778796 [TBL] [Abstract][Full Text] [Related]
4. Evidence for distinct pathways in rabbit renal brush-border membrane vesicles for the transport of unsubstituted and alpha-hydroxysubstituted aliphatic monocarboxylic acids. Barbarat B; Podevin RA J Biol Chem; 1987 Sep; 262(27):13102-6. PubMed ID: 3654603 [TBL] [Abstract][Full Text] [Related]
5. Kinetics of sodium-dependent solute transport by rabbit renal and jejunal brush-border vesicles using a fluorescent dye. Schell RE; Stevens BR; Wright EM J Physiol; 1983 Feb; 335():307-18. PubMed ID: 6875880 [TBL] [Abstract][Full Text] [Related]
6. Sensitivity of renal brush-border Na+-cotransport systems to anions. Levine R; Hirayama B; Wright EM Biochim Biophys Acta; 1984 Jan; 769(2):508-10. PubMed ID: 6696897 [TBL] [Abstract][Full Text] [Related]
8. Asymmetry in the transport of lactate by basolateral and brush border membranes of rat kidney cortex. Barac-Nieto M; Murer H; Kinne R Pflugers Arch; 1982 Feb; 392(4):366-71. PubMed ID: 7070969 [TBL] [Abstract][Full Text] [Related]
9. A proton gradient, not a sodium gradient, is the driving force for active transport of lactate in rabbit intestinal brush-border membrane vesicles. Tiruppathi C; Balkovetz DF; Ganapathy V; Miyamoto Y; Leibach FH Biochem J; 1988 Nov; 256(1):219-23. PubMed ID: 2851979 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of transport for toxic cysteine conjugates in rat kidney cortex membrane vesicles. Schaeffer VH; Stevens JL Mol Pharmacol; 1987 Aug; 32(1):293-8. PubMed ID: 3614193 [TBL] [Abstract][Full Text] [Related]
11. Na+-dependent transport of glycine in renal brush border membrane vesicles. Evidence for a single specific transport system. Hammerman MR; Sacktor B Biochim Biophys Acta; 1982 Apr; 686(2):189-96. PubMed ID: 7082661 [TBL] [Abstract][Full Text] [Related]
12. Transport of L-leucine hydroxy analogue and L-lactate in rabbit small-intestinal brush-border membrane vesicles. Friedrich M; Murer H; Berger EG Pflugers Arch; 1991 May; 418(4):393-9. PubMed ID: 1876483 [TBL] [Abstract][Full Text] [Related]
13. Na+-dependent transport of tricarboxylic acid cycle intermediates by renal brush border membranes. Effects on fluorescence of a potential-sensitive cyanine dye. Wright SH; Krasne S; Kippen I; Wright EM Biochim Biophys Acta; 1981 Feb; 640(3):767-78. PubMed ID: 7213704 [TBL] [Abstract][Full Text] [Related]
14. Na-dependent transport of S-(1,2-dichlorovinyl)-L-cysteine by renal brush-border membrane vesicles. Wright SH; Wunz TM; North J; Stevens JL J Pharmacol Exp Ther; 1998 Apr; 285(1):162-9. PubMed ID: 9536006 [TBL] [Abstract][Full Text] [Related]
15. Multiple transport pathways for neutral amino acids in rabbit jejunal brush border vesicles. Stevens BR; Ross HJ; Wright EM J Membr Biol; 1982; 66(3):213-25. PubMed ID: 6808139 [TBL] [Abstract][Full Text] [Related]
16. Decreased Na+-gradient-dependent D-glucose transport in brush-border membrane vesicles from rabbits with experimental Fanconi syndrome. Yanase M; Orita Y; Okada N; Nakanishi T; Horio M; Ando A; Abe H Biochim Biophys Acta; 1983 Aug; 733(1):95-101. PubMed ID: 6882758 [TBL] [Abstract][Full Text] [Related]
17. Succinate and citrate transport in renal basolateral and brush-border membranes. Wright SH; Wunz TM Am J Physiol; 1987 Sep; 253(3 Pt 2):F432-9. PubMed ID: 3631279 [TBL] [Abstract][Full Text] [Related]
18. LLC-PK1 cells express Na+-lactate cotransport in apical membranes after confluency. Poustis-Delpont C; Mengual R; Sudaka P Am J Physiol; 1988 Dec; 255(6 Pt 2):F1249-55. PubMed ID: 3202188 [TBL] [Abstract][Full Text] [Related]
19. Lactate-sodium cotransport in rat renal brush border membranes. Barac-Nieto M; Murer H; Kinne R Am J Physiol; 1980 Nov; 239(5):F496-506. PubMed ID: 6159793 [TBL] [Abstract][Full Text] [Related]
20. The mechanism of Na+-L-lactate cotransport by brush border membrane vesicles from horse kidney: analysis of rapid equilibrium kinetics in absence of membrane potential. Mengual R; Sudaka P J Membr Biol; 1983; 71(3):163-71. PubMed ID: 6842580 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]