BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 6854644)

  • 1. Lipid bilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles.
    Lewis BA; Engelman DM
    J Mol Biol; 1983 May; 166(2):211-7. PubMed ID: 6854644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane thickness and acyl chain length.
    Cornell BA; Separovic F
    Biochim Biophys Acta; 1983 Aug; 733(1):189-93. PubMed ID: 6882754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Component volumes of unsaturated phosphatidylcholines in fluid bilayers: a densitometric study.
    Uhríková D; Rybár P; Hianik T; Balgavý P
    Chem Phys Lipids; 2007 Feb; 145(2):97-105. PubMed ID: 17196953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New structural model for mixed-chain phosphatidylcholine bilayers.
    McIntosh TJ; Simon SA; Ellington JC; Porter NA
    Biochemistry; 1984 Aug; 23(18):4038-44. PubMed ID: 6487589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphatidylcholine-fatty acid membranes. I. Effects of protonation, salt concentration, temperature and chain-length on the colloidal and phase properties of mixed vesicles, bilayers and nonlamellar structures.
    Cevc G; Seddon JM; Hartung R; Eggert W
    Biochim Biophys Acta; 1988 May; 940(2):219-40. PubMed ID: 2835979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acyl chain interdigitation in saturated mixed-chain phosphatidylcholine bilayer dispersions.
    Hui SW; Mason JT; Huang C
    Biochemistry; 1984 Nov; 23(23):5570-7. PubMed ID: 6509035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of ethanol on the phase transition temperature and the phase structure of monounsaturated phosphatidylcholines.
    McIntosh TJ; Lin H; Li S; Huang C
    Biochim Biophys Acta; 2001 Feb; 1510(1-2):219-30. PubMed ID: 11342160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of cholesterol on the structure of phosphatidylcholine bilayers.
    McIntosh TJ
    Biochim Biophys Acta; 1978 Oct; 513(1):43-58. PubMed ID: 718889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray diffraction and neutron scattering studies of amphiphile-lipid bilayer organization.
    Balgavý P; Uhríková D; Karlovská J; Dubnicková M; Kucerka N; Devínsky F; Lacko I; Cizmárik J; Lohner K; Degovics G; Rapp G; Yaradaikin S; Kiselev M; Islamov A; Gordeliy V
    Cell Mol Biol Lett; 2001; 6(2A):283-90. PubMed ID: 11598648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of chain length and unsaturation on elasticity of lipid bilayers.
    Rawicz W; Olbrich KC; McIntosh T; Needham D; Evans E
    Biophys J; 2000 Jul; 79(1):328-39. PubMed ID: 10866959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partial area of cholesterol in monounsaturated diacylphosphatidylcholine bilayers.
    Gallová J; Uhríková D; Kučerka N; Teixeira J; Balgavý P
    Chem Phys Lipids; 2010 Nov; 163(8):765-70. PubMed ID: 20728436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence quenching in model membranes. 3. Relationship between calcium adenosinetriphosphatase enzyme activity and the affinity of the protein for phosphatidylcholines with different acyl chain characteristics.
    Caffrey M; Feigenson GW
    Biochemistry; 1981 Mar; 20(7):1949-61. PubMed ID: 6452902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The formation of multilamellar vesicles from saturated phosphatidylcholines and phosphatidylethanolamines: morphology and quasi-elastic light scattering measurements.
    Singer MA; Finegold L; Rochon P; Racey TJ
    Chem Phys Lipids; 1990 May; 54(2):131-46. PubMed ID: 2364473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of cholesterol on bilayers of ester- and ether-linked phospholipids. Permeability and 13C-nuclear magnetic resonance measurements.
    Bittman R; Clejan S; Lund-Katz S; Phillips MC
    Biochim Biophys Acta; 1984 May; 772(2):117-26. PubMed ID: 6722139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature.
    Kučerka N; Nieh MP; Katsaras J
    Biochim Biophys Acta; 2011 Nov; 1808(11):2761-71. PubMed ID: 21819968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixed-chain phosphatidylcholine bilayers: structure and properties.
    Mattai J; Sripada PK; Shipley GG
    Biochemistry; 1987 Jun; 26(12):3287-97. PubMed ID: 3651383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray diffraction evidence for fully interdigitated bilayers of 1-stearoyllysophosphatidylcholine.
    Hui SW; Huang CH
    Biochemistry; 1986 Mar; 25(6):1330-5. PubMed ID: 3964679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of hydrostatic pressure on the bilayer phase behavior of symmetric and asymmetric phospholipids with the same total chain length.
    Goto M; Kusube M; Tamai N; Matsuki H; Kaneshina S
    Biochim Biophys Acta; 2008 Apr; 1778(4):1067-78. PubMed ID: 18190778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calorimetric investigations of saturated mixed-chain phosphatidylcholine bilayer dispersions.
    Mason JT; Huang C; Biltonen RL
    Biochemistry; 1981 Oct; 20(21):6086-92. PubMed ID: 7306496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by (2)H NMR spectroscopy.
    Petrache HI; Dodd SW; Brown MF
    Biophys J; 2000 Dec; 79(6):3172-92. PubMed ID: 11106622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.