These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 685531)

  • 101. Production of acetone, butanol, and ethanol by electro-fermentation with Clostridium saccharoperbutylacetonicum N1-4.
    Alberto García Mogollón C; Carlos Quintero Díaz J; Omar Gil Posada J
    Bioelectrochemistry; 2023 Aug; 152():108414. PubMed ID: 36940584
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Investigation of secondary metabolism in the industrial butanol hyper-producer Clostridium saccharoperbutylacetonicum N1-4.
    Li JS; Barber CC; Herman NA; Cai W; Zafrir E; Du Y; Zhu X; Skyrud W; Zhang W
    J Ind Microbiol Biotechnol; 2020 Mar; 47(3):319-328. PubMed ID: 32103460
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Enhancing xylose and glucose utilization as well as solvent production using a simplified three-electrode potentiostat system during Clostridium fermentation.
    Popovic J; Finneran KT
    J Ind Microbiol Biotechnol; 2020 Oct; 47(9-10):889-895. PubMed ID: 33026637
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Degeneration of solventogenic Clostridium strains monitored by Fourier transform infrared spectroscopy of bacterial cells.
    Schuster KC; Goodacre R; Gapes JR; Young M
    J Ind Microbiol Biotechnol; 2001 Nov; 27(5):314-21. PubMed ID: 11781807
    [TBL] [Abstract][Full Text] [Related]  

  • 105. The Draft Genome Sequence of a Novel High-Efficient Butanol-Producing Bacterium Clostridium Diolis Strain WST.
    Chen C; Sun C; Wu YR
    Curr Microbiol; 2018 Aug; 75(8):1011-1015. PubMed ID: 29564548
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Metabolic engineering of Clostridium ljungdahlii for the production of hexanol and butanol from CO
    Lauer I; Philipps G; Jennewein S
    Microb Cell Fact; 2022 May; 21(1):85. PubMed ID: 35568911
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Butanol production from crystalline cellulose by cocultured Clostridium thermocellum and Clostridium saccharoperbutylacetonicum N1-4.
    Nakayama S; Kiyoshi K; Kadokura T; Nakazato A
    Appl Environ Microbiol; 2011 Sep; 77(18):6470-5. PubMed ID: 21764954
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Physiology of carbohydrate to solvent conversion by clostridia.
    Mitchell WJ
    Adv Microb Physiol; 1998; 39():31-130. PubMed ID: 9328646
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Regulation of the sol locus genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 by a putative transcriptional repressor.
    Nair RV; Green EM; Watson DE; Bennett GN; Papoutsakis ET
    J Bacteriol; 1999 Jan; 181(1):319-30. PubMed ID: 9864345
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Continuous cultures of Clostridium acetobutylicum: culture stability and low-grade glycerol utilisation.
    Andrade JC; Vasconcelos I
    Biotechnol Lett; 2003 Jan; 25(2):121-5. PubMed ID: 12882286
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Bacterial conversion of pentose sugars to acetone and butanol.
    Volesky B; Szczesny T
    Adv Biochem Eng Biotechnol; 1983; 27():101-18. PubMed ID: 6437153
    [No Abstract]   [Full Text] [Related]  

  • 112. Quantitative proteomic analysis to reveal expression differences for butanol production from glycerol and glucose by Clostridium sp. strain CT7.
    Jiang Y; Wu R; Lu J; Dong W; Zhou J; Zhang W; Xin F; Jiang M
    Microb Cell Fact; 2021 Jan; 20(1):12. PubMed ID: 33422075
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Analysis of Tn916-induced mutants of Clostridium acetobutylicum altered in solventogenesis and sporulation.
    Mattsson DM; Rogers P
    J Ind Microbiol; 1994 Jul; 13(4):258-68. PubMed ID: 7765050
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Using Co-Culture to Functionalize Clostridium Fermentation.
    Cui Y; Yang KL; Zhou K
    Trends Biotechnol; 2021 Sep; 39(9):914-926. PubMed ID: 33342558
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Changes in protein synthesis and identification of proteins specifically induced during solventogenesis in Clostridium acetobutylicum.
    Schaffer S; Isci N; Zickner B; Dürre P
    Electrophoresis; 2002 Jan; 23(1):110-21. PubMed ID: 11824611
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Production of Solvents by Clostridium acetobutylicum Cultures Maintained at Neutral pH.
    Holt RA; Stephens GM; Morris JG
    Appl Environ Microbiol; 1984 Dec; 48(6):1166-70. PubMed ID: 16346678
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Bacteriocin production by Clostridium acetobutylicum in an industrial fermentation process.
    Barber JM; Robb FT; Webster JR; Woods DR
    Appl Environ Microbiol; 1979 Mar; 37(3):433-7. PubMed ID: 36841
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Co-production of solvents and organic acids in butanol fermentation by
    Luo H; Zheng P; Xie F; Yang R; Liu L; Han S; Zhao Y; Bilal M
    RSC Adv; 2019 Feb; 9(12):6919-6927. PubMed ID: 35518483
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Renewable Butanol Production via Catalytic Routes.
    Choi H; Han J; Lee J
    Int J Environ Res Public Health; 2021 Nov; 18(22):. PubMed ID: 34831504
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Aerobic acetone-butanol-isopropanol (ABI) fermentation through a co-culture of
    Cui Y; He J; Yang KL; Zhou K
    Metab Eng Commun; 2020 Dec; 11():e00137. PubMed ID: 32612931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.