These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 6855773)

  • 1. Regular arrangement of nucleosomes on 5S rRNA genes in Xenopus laevis.
    Young D; Carroll D
    Mol Cell Biol; 1983 Apr; 3(4):720-30. PubMed ID: 6855773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonrandom alignment of nucleosomes on 5S RNA genes of X. laevis.
    Gottesfeld JM; Bloomer LS
    Cell; 1980 Oct; 21(3):751-60. PubMed ID: 7438206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organization of 5S genes in chromatin of Xenopus laevis.
    Gottesfeld JM
    Nucleic Acids Res; 1980 Feb; 8(4):905-22. PubMed ID: 6253929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosomal organization of Xenopus laevis oocyte and somatic 5S rRNA genes in vivo.
    Chipev CC; Wolffe AP
    Mol Cell Biol; 1992 Jan; 12(1):45-55. PubMed ID: 1729615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatin structure of the 5S RNA genes of D. melanogaster.
    Louis C; Schedl P; Samal B; Worcel A
    Cell; 1980 Nov; 22(2 Pt 2):387-92. PubMed ID: 6778618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA sequence-directed nucleosome reconstitution on 5S RNA genes of Xenopus laevis.
    Gottesfeld JM
    Mol Cell Biol; 1987 May; 7(5):1612-22. PubMed ID: 3600640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of 5S RNA transcription in Xenopus somatic cell chromatin: activation with an oocyte extract.
    Reynolds WF; Bloomer LS; Gottesfeld JM
    Nucleic Acids Res; 1983 Jan; 11(1):57-75. PubMed ID: 6866764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The isolation and characterization of a second oocyte 5s DNA from Xenopus laevis.
    Brown DD; Carrol D; Brown RD
    Cell; 1977 Dec; 12(4):1045-56. PubMed ID: 563770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence-specific cleavage of chromatin by staphylococcal nuclease can generate an atypical nucleosome pattern.
    Pauli UH; Seebeck T; Braun R
    Nucleic Acids Res; 1982 Jul; 10(14):4121-33. PubMed ID: 7122237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleotide sequence of Xenopus borealis oocyte 5S DNA: comparison of sequences that flank several related eucaryotic genes.
    Korn LJ; Brown DD
    Cell; 1978 Dec; 15(4):1145-56. PubMed ID: 264240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of histone H1 as an architectural determinant of chromatin structure and as a specific repressor of transcription on Xenopus oocyte 5S rRNA genes.
    Sera T; Wolffe AP
    Mol Cell Biol; 1998 Jul; 18(7):3668-80. PubMed ID: 9632749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of two xenopus somatic 5S DNAs and one minor oocyte-specific 5S DNA.
    Peterson RC; Doering JL; Brown DD
    Cell; 1980 May; 20(1):131-41. PubMed ID: 6248230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleosome repeat structure is present in native salivary chromosomes of Drosophila melanogaster.
    Hill RJ; Mott MR; Burnett EJ; Abmayr SM; Lowenhaupt K; Elgin SC
    J Cell Biol; 1982 Oct; 95(1):262-6. PubMed ID: 6815206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Both the 5S rRNA gene and the AT-rich flanks of xenopus laevis oocyte-type 5S rDNA repeat are required for histone H1-dependent repression of transcription of pol III-type genes in in vitro reconstituted chromatin.
    Tomaszewski R; Mogielnicka E; Jerzmanowski A
    Nucleic Acids Res; 1998 Dec; 26(24):5596-601. PubMed ID: 9837988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the repressed 5S DNA minichromosomes assembled in vitro with a high-speed supernatant of Xenopus laevis oocytes.
    Shimamura A; Tremethick D; Worcel A
    Mol Cell Biol; 1988 Oct; 8(10):4257-69. PubMed ID: 3185548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different nucleosome spacing in transcribed and non-transcribed regions of the ribosomal RNA gene in Tetrahymena thermophila.
    Gottschling DE; Palen TE; Cech TR
    Nucleic Acids Res; 1983 Apr; 11(7):2093-109. PubMed ID: 6835846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dominant and specific repression of Xenopus oocyte 5S RNA genes and satellite I DNA by histone H1.
    Wolffe AP
    EMBO J; 1989 Feb; 8(2):527-37. PubMed ID: 2721490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The AT-rich flanks of the oocyte-type 5S RNA gene of Xenopus laevis act as a strong local signal for histone H1-mediated chromatin reorganization in vitro.
    Tomaszewski R; Jerzmanowski A
    Nucleic Acids Res; 1997 Feb; 25(3):458-66. PubMed ID: 9016582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleosome arrangement in alpha-satellite chromatin of African green monkey cells.
    Smith MR; Lieberman MW
    Nucleic Acids Res; 1984 Aug; 12(16):6493-510. PubMed ID: 6089117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly of transcriptionally active chromatin in Xenopus oocytes requires specific DNA binding factors.
    Gargiulo G; Razvi F; Worcel A
    Cell; 1984 Sep; 38(2):511-21. PubMed ID: 6540626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.