These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 68559)

  • 21. The effects of elevated intraocular pressure on slow axonal protein flow.
    Levy NS
    Invest Ophthalmol; 1974 Sep; 13(9):691-5. PubMed ID: 4137262
    [No Abstract]   [Full Text] [Related]  

  • 22. Analysis of orthograde fast axonal transport and nonaxonal transport along the optic pathway of albino rabbits during increased and decreased intraocular pressure.
    Chihara E; Honda Y
    Exp Eye Res; 1981 Feb; 32(2):229-39. PubMed ID: 6165601
    [No Abstract]   [Full Text] [Related]  

  • 23. Electron microscopic distrubition of axoplasmic transport.
    Hendrickson AE
    J Comp Neurol; 1972 Apr; 144(4):381-97. PubMed ID: 4116068
    [No Abstract]   [Full Text] [Related]  

  • 24. Electron microscopic distribution of axoplasmic transport.
    Hendrickson AE
    J Comp Neurol; 1972 Apr; 144(4):381-98. PubMed ID: 4112745
    [No Abstract]   [Full Text] [Related]  

  • 25. Optic nerve hydropic axonal degeneration and blocked retrograde axoplasmic transport: histopathologic features in human high-pressure secondary glaucoma.
    Knox DL; Eagle RC; Green WR
    Arch Ophthalmol; 2007 Mar; 125(3):347-53. PubMed ID: 17353405
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The hydrostatic mechanism of papilledema.
    Hedges TR; Weinstein JD
    Trans Am Acad Ophthalmol Otolaryngol; 1968; 72(5):741-50. PubMed ID: 4175982
    [No Abstract]   [Full Text] [Related]  

  • 27. The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve.
    Quigley H; Anderson DR
    Invest Ophthalmol; 1976 Aug; 15(8):606-16. PubMed ID: 60300
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluids in the anterior aprt of the optic nerve in health and disease.
    Hayreh SS
    Trans Ophthalmol Soc U K (1962); 1977 Sep; 97(4):573-87. PubMed ID: 83040
    [No Abstract]   [Full Text] [Related]  

  • 29. Axonal damage in papilledema linked to idiopathic intracranial hypertension as revealed by multifocal visual evoked potentials.
    Hartmann CJ; Klistorner AI; Brandt AU; Schroeder K; Kolbe R; Cohn E; Goebels N; Guthoff R; Aktas O; Hartung HP; Albrecht P
    Clin Neurophysiol; 2015 Oct; 126(10):2040-1. PubMed ID: 25613033
    [No Abstract]   [Full Text] [Related]  

  • 30. Chronic experimental glaucoma in primates. II. Effect of extended intraocular pressure elevation on optic nerve head and axonal transport.
    Quigley HA; Addicks EM
    Invest Ophthalmol Vis Sci; 1980 Feb; 19(2):137-52. PubMed ID: 6153173
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation and management of papilloedema by the neurologist.
    Ohlrich GD
    Aust J Ophthalmol; 1982 Aug; 10(3):211-4. PubMed ID: 7181765
    [No Abstract]   [Full Text] [Related]  

  • 32. Comparison of fluctuating and sustained neural pressure perturbations on axonal transport processes in the optic nerve.
    Balaratnasingam C; Cringle SJ; Fatehee N; Morgan WH; Yu DY
    Brain Res; 2011 Oct; 1417():67-76. PubMed ID: 21911211
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Annual review of section on ocular disease: diseases of the optic nerve, tracts, and visual cortex.
    Williams TD
    Am J Optom Physiol Opt; 1980 Jan; 57(1):33-47. PubMed ID: 6155071
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Papilloedema as a non-invasive marker for raised intra-cranial pressure following decompressive craniectomy for severe head injury.
    Joshua SP; Agrawal D; Sharma BS; Mahapatra AK
    Clin Neurol Neurosurg; 2011 Oct; 113(8):635-8. PubMed ID: 21676532
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental effect of intracranial hypertension upon intraocular pressure.
    Lehman RA; Krupin T; Podos SM
    J Neurosurg; 1972 Jan; 36(1):60-6. PubMed ID: 4621385
    [No Abstract]   [Full Text] [Related]  

  • 36. Orthograde and retrograde axoplasmic transport during acute ocular hypertension in the monkey.
    Minckler DS; Bunt AH; Johanson GW
    Invest Ophthalmol Vis Sci; 1977 May; 16(5):426-41. PubMed ID: 67096
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The mechanism of optic nerve damage in experimental acute intraocular pressure elevation.
    Quigley HA; Flower RW; Addicks EM; McLeod DS
    Invest Ophthalmol Vis Sci; 1980 May; 19(5):505-17. PubMed ID: 6154668
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Axoplasmic transport in optic nerve (an experimental study in rabbits).
    Khosla PK; Patra S; Prakash P; Ratnakar KS
    Indian J Ophthalmol; 1982 Jan; 30(1):23-8. PubMed ID: 6183203
    [No Abstract]   [Full Text] [Related]  

  • 39. EXPERIMENTAL INTRACRANIAL HYPERTENSION AND PAPILLEDEMA IN THE MONKEY.
    LANGFITT TW; SHAWALUK PD; MAHONEY RP; STEIN SC; HEDGES TR
    J Neurosurg; 1964 Jun; 21():469-78. PubMed ID: 14171304
    [No Abstract]   [Full Text] [Related]  

  • 40. Failure of unilateral carotid artery ligation to affect pressure-induced interruption of rapid axonal transport in primate optic nerves.
    Radius RL; Schwartz EL; Anderson DR
    Invest Ophthalmol Vis Sci; 1980 Feb; 19(2):153-7. PubMed ID: 6153174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.