BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 6857848)

  • 21. [Results of biomechanical studies of various external fixation devices of the pelvis].
    Vécsei V
    Aktuelle Traumatol; 1988 Dec; 18(6):261-4. PubMed ID: 2907253
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The electrical induction of callus formation and external skeletal fixation using methyl methacrylate for delayed union of open tibial fracture with segmental loss.
    Inoue S; Ohashi T; Imai R; Ichida M; Yasuda I
    Clin Orthop Relat Res; 1977 May; (124):92-6. PubMed ID: 304406
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Disadvantages of interfragmentary shear on fracture healing--mechanical insights through numerical simulation.
    Steiner M; Claes L; Ignatius A; Simon U; Wehner T
    J Orthop Res; 2014 Jul; 32(7):865-72. PubMed ID: 24648331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomechanics of fracture healing.
    Perren SM; Rahn BA
    Can J Surg; 1980 May; 23(3):228-32. PubMed ID: 6991087
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bone remodeling in response to local mechanics.
    Mayor MB
    Bull Hosp Jt Dis Orthop Inst; 1983; 43(2):100-2. PubMed ID: 6317092
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A study of fracture callus material properties: relationship to the torsional strength of bone.
    Markel MD; Wikenheiser MA; Chao EY
    J Orthop Res; 1990 Nov; 8(6):843-50. PubMed ID: 2213341
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation of fixation stiffness from flexible to stiff in a rat model of bone healing.
    Bartnikowski N; Claes LE; Koval L; Glatt V; Bindl R; Steck R; Ignatius A; Schuetz MA; Epari DR
    Acta Orthop; 2017 Apr; 88(2):217-222. PubMed ID: 27841708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Callus Formation and Mineralization after Fracture with Different Fixation Techniques: Minimally Invasive Plate Osteosynthesis versus Open Reduction Internal Fixation.
    Xu H; Xue Z; Ding H; Qin H; An Z
    PLoS One; 2015; 10(10):e0140037. PubMed ID: 26444295
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural and biomechanical changes in bone after rigid plate fixation.
    Slätis P; Paavolainen P; Karaharju E; Holmström T
    Can J Surg; 1980 May; 23(3):247-50. PubMed ID: 7378956
    [No Abstract]   [Full Text] [Related]  

  • 30. A comparison of the effect of open intramedullary nailing and compression-plate fixation on fracture-site blood flow and fracture union.
    Rand JA; An KN; Chao EY; Kelly PJ
    J Bone Joint Surg Am; 1981 Mar; 63(3):427-42. PubMed ID: 7204443
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of the time course of callus stiffness as a function of mechanical parameters in experimental rat fracture healing studies--a numerical study.
    Wehner T; Steiner M; Ignatius A; Claes L
    PLoS One; 2014; 9(12):e115695. PubMed ID: 25532060
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Correlative study between character of bending strength of callus and X-ray density of callus in fracture healing process].
    Zou BZ; Dong FH; Qian MQ
    Zhongguo Zhong Xi Yi Jie He Za Zhi; 1997 Nov; 17(11):663-5. PubMed ID: 10322846
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of properties of fracture callus by measurement of mineral density using micro-bone densitometry.
    Aro HT; Wippermann BW; Hodgson SF; Wahner HW; Lewallen DG; Chao EY
    J Bone Joint Surg Am; 1989 Aug; 71(7):1020-30. PubMed ID: 2760077
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Static fixation of finger fractures.
    Cziffer E
    Hand Clin; 1993 Nov; 9(4):639-50. PubMed ID: 8300733
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Endochondral fracture healing with external fixation in the Sost knockout mouse results in earlier fibrocartilage callus removal and increased bone volume fraction and strength.
    Morse A; Yu NY; Peacock L; Mikulec K; Kramer I; Kneissel M; McDonald MM; Little DG
    Bone; 2015 Feb; 71():155-63. PubMed ID: 25445453
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The biology of fracture healing in long bones.
    McKibbin B
    J Bone Joint Surg Br; 1978 May; 60-B(2):150-62. PubMed ID: 350882
    [No Abstract]   [Full Text] [Related]  

  • 37. Mineral and matrix contributions to rigidity in fracture healing.
    Chakkalakal DA; Lippiello L; Wilson RF; Shindell R; Connolly JF
    J Biomech; 1990; 23(5):425-34. PubMed ID: 2373715
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Indications of operative treatment of fractures. Experimental surgery and clinical aspects].
    Eitel F
    Hefte Unfallheilkd; 1981; 154():1-88. PubMed ID: 7026507
    [No Abstract]   [Full Text] [Related]  

  • 39. Diabetes mellitus affects the biomechanical function of the callus and the expression of TGF-beta1 and BMP2 in an early stage of fracture healing.
    Xu MT; Sun S; Zhang L; Xu F; Du SL; Zhang XD; Wang DW
    Braz J Med Biol Res; 2016 Jan; 49(1):e4736. PubMed ID: 26628397
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strontium ranelate enhances callus strength more than PTH 1-34 in an osteoporotic rat model of fracture healing.
    Habermann B; Kafchitsas K; Olender G; Augat P; Kurth A
    Calcif Tissue Int; 2010 Jan; 86(1):82-9. PubMed ID: 19960189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.