These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 6859237)

  • 21. Immunocytochemical localization of tyrosine hydroxylase and gamma-aminobutyric acid in the mesencephalic trigeminal nucleus of the cat: a light and electron microscopic study.
    Lazarov NE; Chouchkov CN
    Anat Rec; 1995 May; 242(1):123-31. PubMed ID: 7604976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Characteristics of uptake of neurotransmitter amino acids in brain preparations of aging albino rats].
    Aprikian GV; Shaginian VA; Mkrtchian GA; Paronian ZhA; Knarian VA
    Fiziol Zh (1978); 1984; 30(1):69-73. PubMed ID: 6142838
    [No Abstract]   [Full Text] [Related]  

  • 23. Differential labeling of sensory cell and neural populations in the organ of Corti following amino acid incubations.
    Schwartz IR; Ryan AF
    Hear Res; 1983 Feb; 9(2):185-200. PubMed ID: 6131879
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amino acid concentrations in chinchilla cochlear nucleus at different times after carboplatin treatment.
    Godfrey DA; Godfrey MA; Ding DL; Chen K; Salvi RJ
    Hear Res; 2005 Aug; 206(1-2):64-73. PubMed ID: 16080999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Co-localization of glycine and gaba immunoreactivity in interneurons in Macaca monkey cerebellar cortex.
    Crook J; Hendrickson A; Robinson FR
    Neuroscience; 2006 Sep; 141(4):1951-9. PubMed ID: 16784818
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Amino acid concentrations in rat cochlear nucleus and superior olive.
    Godfrey DA; Farms WB; Godfrey TG; Mikesell NL; Liu J
    Hear Res; 2000 Dec; 150(1-2):189-205. PubMed ID: 11077203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of anticonvulsant drugs on brain amino acid metabolism.
    Chapman AG; Meldrum BS
    Prog Clin Biol Res; 1983; 124():63-76. PubMed ID: 6410409
    [No Abstract]   [Full Text] [Related]  

  • 28. Amino acid uptake and release in the guinea pig cochlear nucleus after inferior colliculus ablation.
    Bergman M; Staatz-Benson C; Potashner SJ
    Hear Res; 1989 Nov; 42(2-3):283-91. PubMed ID: 2606808
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo studies on amino acid transmitters in the central auditory system of the guinea pig.
    Jarlstedt J; Karlsson B; Hamberger A
    Otolaryngol Head Neck Surg; 1985 Feb; 93(1):27-30. PubMed ID: 2858838
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GABA and glycine in retinal amacrine cells: combined Golgi impregnation and immunocytochemistry.
    Sherry DM; Yazulla S
    Philos Trans R Soc Lond B Biol Sci; 1993 Dec; 342(1302):295-320. PubMed ID: 7509492
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neurochemical development of the degenerating rat retina.
    Fletcher EL; Kalloniatis M
    J Comp Neurol; 1997 Nov; 388(1):1-22. PubMed ID: 9364235
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Axonal projections from the lateral and medial superior olive to the inferior colliculus of the cat: a study using electron microscopic autoradiography.
    Oliver DL; Beckius GE; Shneiderman A
    J Comp Neurol; 1995 Sep; 360(1):17-32. PubMed ID: 7499562
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of N-methyl-D-aspartate receptor subunit immunoreactivity in the neonatal gerbil cochlear nucleus.
    Joelson D; Schwartz IR
    Microsc Res Tech; 1998 May; 41(3):246-62. PubMed ID: 9605342
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glycine-immunoreactive terminals in the rat trigeminal motor nucleus: light- and electron-microscopic analysis of their relationships with motoneurones and with GABA-immunoreactive terminals.
    Yang HW; Min MY; Appenteng K; Batten TF
    Brain Res; 1997 Feb; 749(2):301-19. PubMed ID: 9138731
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of transient neonatal hypothyroidism on the free aspartic acid, glutamic acid, and GABA content of different central auditory regions in the rat.
    Hébert R; Poulin R; Barden N; Dussault JH
    Can J Physiol Pharmacol; 1987 Mar; 65(3):424-7. PubMed ID: 2884026
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Organization of inhibitory feed-forward synapses from the dorsal to the ventral cochlear nucleus in the cat: a quantitative analysis of endings by vesicle morphology.
    Munirathinam S; Ostapoff EM; Gross J; Kempe GS; Dutton JA; Morest DK
    Hear Res; 2004 Dec; 198(1-2):99-115. PubMed ID: 15567607
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in cerebellar amino acid neurotransmitter concentrations and receptors following administration of the neurotoxin L-2-chloropropionic acid.
    Widdowson PS; Gyte A; Simpson MG; Wyatt I; Lock EA
    Toxicol Appl Pharmacol; 1996 Jan; 136(1):57-66. PubMed ID: 8560480
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The potassium channel KCNQ5/Kv7.5 is localized in synaptic endings of auditory brainstem nuclei of the rat.
    Caminos E; Garcia-Pino E; Martinez-Galan JR; Juiz JM
    J Comp Neurol; 2007 Dec; 505(4):363-78. PubMed ID: 17912742
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GABA and glycine in the central auditory system of the mustache bat: structural substrates for inhibitory neuronal organization.
    Winer JA; Larue DT; Pollak GD
    J Comp Neurol; 1995 May; 355(3):317-53. PubMed ID: 7636017
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amino acid immunocytochemistry of primary afferent terminals in the rat dorsal horn.
    Valtschanoff JG; Phend KD; Bernardi PS; Weinberg RJ; Rustioni A
    J Comp Neurol; 1994 Aug; 346(2):237-52. PubMed ID: 7525664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.