These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 6859246)

  • 1. Fatigue considerations of muscle contractile force during high-frequency stimulation.
    Solomonow M; Eldred E; Lyman J; Foster J
    Am J Phys Med; 1983 Jun; 62(3):117-22. PubMed ID: 6859246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of muscle contractile force through indirect high-frequency stimulation.
    Solomonow M; Eldred E; Lyman J; Foster J
    Am J Phys Med; 1983 Apr; 62(2):71-82. PubMed ID: 6837727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatigue of paralyzed and control thenar muscles induced by variable or constant frequency stimulation.
    Thomas CK; Griffin L; Godfrey S; Ribot-Ciscar E; Butler JE
    J Neurophysiol; 2003 Apr; 89(4):2055-64. PubMed ID: 12611940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of stimulation frequency on force, net power output, and fatigue in mouse soleus muscle in vitro.
    Vassilakos G; James RS; Cox VM
    Can J Physiol Pharmacol; 2009 Mar; 87(3):203-10. PubMed ID: 19295661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dependence of fatigue properties on the pattern of stimulation in the rat diaphragm muscle.
    Gölgeli A; Ozesmi C; Ozesmi M
    Indian J Physiol Pharmacol; 1995 Oct; 39(4):315-22. PubMed ID: 8582742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of stimulation pulse frequency on the generation of joint moments in the upper limb.
    Nathan R; Tavi M
    IEEE Trans Biomed Eng; 1990 Mar; 37(3):317-22. PubMed ID: 2329005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interleaved, multisite electrical stimulation of cat sciatic nerve produces fatigue-resistant, ripple-free motor responses.
    McDonnall D; Clark GA; Normann RA
    IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):208-15. PubMed ID: 15218935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Change in muscle force following electrical stimulation. Dependence on stimulation waveform and frequency.
    Stefanovska A; Vodovnik L
    Scand J Rehabil Med; 1985; 17(3):141-6. PubMed ID: 4059886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tetanic depression in fast motor units of the cat gastrocnemius muscle.
    Celichowski J; Krutki P; Łochyński D; Grottel K; Mróczyński W
    J Physiol Pharmacol; 2004 Jun; 55(2):291-303. PubMed ID: 15213353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of vitamin E deficiency on fatigue and muscle contractile properties.
    Coombes JS; Rowell B; Dodd SL; Demirel HA; Naito H; Shanely RA; Powers SK
    Eur J Appl Physiol; 2002 Jul; 87(3):272-7. PubMed ID: 12111289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of tension decline in different types of fatigue-resistant skeletal muscle fibres of the frog. Low extracellular calcium effects.
    Radzyukevich T; Lipská E; Pavelková J; Zacharová D
    Gen Physiol Biophys; 1993 Oct; 12(5):473-90. PubMed ID: 8181694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological fatigue of smooth muscle contractions in rat urinary bladder.
    Pagala M; Lehman DS; Morgan MP; Jedwab J; Wise GJ
    BJU Int; 2006 May; 97(5):1087-93. PubMed ID: 16643497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of activation frequency on cellular signalling pathways during fatiguing contractions in rat skeletal muscle.
    Russ DW; Lovering RM
    Exp Physiol; 2006 Nov; 91(6):957-66. PubMed ID: 16857718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A linear time-varying model of force generation in skeletal muscle.
    Bobet J; Stein RB; Oğuztöreli MN
    IEEE Trans Biomed Eng; 1993 Oct; 40(10):1000-6. PubMed ID: 8294124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationship between fusion index and stimulation frequency in tetani of motor units in rat medial gastrocnemius.
    Celichowski J; Grottel K
    Arch Ital Biol; 1995 Mar; 133(2):81-7. PubMed ID: 7625890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force output during fatigue with progressively increasing stimulation frequency.
    Griffin L; Jun BG; Covington C; Doucet BM
    J Electromyogr Kinesiol; 2008 Jun; 18(3):426-33. PubMed ID: 17208012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Power developed by motor units of the peroneus tertius muscle of the cat.
    Petit J; Giroux-Metges MA; Gioux M
    J Neurophysiol; 2003 Nov; 90(5):3095-104. PubMed ID: 14615427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-frequency fatigue, post-tetanic potentiation and their interaction at different muscle lengths following eccentric exercise.
    Rijkelijkhuizen JM; de Ruiter CJ; Huijing PA; de Haan A
    J Exp Biol; 2005 Jan; 208(Pt 1):55-63. PubMed ID: 15601877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic and nonmetabolic components of fatigue monitored with 31P-NMR.
    Baker AJ; Carson PJ; Miller RG; Weiner MW
    Muscle Nerve; 1994 Sep; 17(9):1002-9. PubMed ID: 8065387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of taurine depletion on the contractile properties and fatigue in fast-twitch skeletal muscle of the mouse.
    Hamilton EJ; Berg HM; Easton CJ; Bakker AJ
    Amino Acids; 2006 Oct; 31(3):273-8. PubMed ID: 16583307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.