BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 6860310)

  • 1. Characteristics of the beta-adrenergic adenylate cyclase system of developing rabbit bone-marrow erythroblasts.
    Setchenska MS; Arnstein HR
    Biochem J; 1983 Feb; 210(2):559-66. PubMed ID: 6860310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of the adenylate cyclase system of differentiating rabbit bone marrow erythroblasts.
    Setchenska MS; Arnstein HR
    Biomed Biochim Acta; 1983; 42(11-12):S192-6. PubMed ID: 6326769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulation of the adenylate cyclase activity of rabbit bone marrow immature erythroblasts by erythropoietin and haemin.
    Bonanou-Tzedaki SA; Setchenska MS; Arnstein HR
    Eur J Biochem; 1986 Mar; 155(2):363-70. PubMed ID: 3956492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of beta-adrenergic subtypes in immature rabbit bone marrow erythroblasts.
    Setchenska MS; Bonanou-Tzedaki SA; Arnstein HR
    Biochem Pharmacol; 1986 Nov; 35(21):3679-84. PubMed ID: 2877667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guanosine 5'-triphosphate and guanosine 5'-[beta gamma-imido]triphosphate effect a collision coupling mechanism between the glucagon receptor and catalytic unit of adenylate cyclase.
    Houslay MD; Dipple I; Elliott KR
    Biochem J; 1980 Mar; 186(3):649-58. PubMed ID: 6249258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of beta-adrenergic receptors by guanyl-5'-yl imidodiphosphate and other purine nucleotides.
    Lefkowitz RJ; Mullikin D; Caron MG
    J Biol Chem; 1976 Aug; 251(15):4686-92. PubMed ID: 947904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of adenylate cyclase in bovine corpus-luteum membranes by human choriogonadotropin, guanine nucleotides and NaF.
    Lydon NB; Young JL; Stansfield DA
    Biochem J; 1981 Sep; 198(3):631-8. PubMed ID: 7326028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of the adenylyl cyclase system of differentiating rabbit bone marrow erythroblasts.
    Setchenska MS; Arnstein HR
    Biomed Biochim Acta; 1983; 42(9):1111-22. PubMed ID: 6322745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adenylate cyclase system of differentiating erythroid cells.
    Setchenska MS
    Acta Physiol Pharmacol Bulg; 1990; 16(2):3-10. PubMed ID: 2281799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Independent activation of adenylate cyclase by erythropoietin and isoprenaline.
    Setchenska MS; Bonanou-Tzedaki SA; Arnstein HR
    Mol Cell Endocrinol; 1988 Apr; 56(3):199-204. PubMed ID: 2836245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of binding sites for guanine nucleotides with adenylate cyclase activation in rat pancreatic plasma membranes. Interaction of gastrointestinal hormones.
    Svoboda M; Robberecht P; Camus J; Deschodt-Lanckman M; Christophe J
    Eur J Biochem; 1978 Feb; 83(1):287-97. PubMed ID: 627213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GDP activates rabbit heart adenylate cyclase, but does not support stimulation by isoproterenol: a re-appraisal of the control mechanism.
    Harding SE; Harris P
    J Mol Cell Cardiol; 1986 Aug; 18(8):793-806. PubMed ID: 3018266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Desensitization of beta-adrenergic receptor-coupled adenylate cyclase in cerebral cortex after in vivo treatment of rats with desipramine.
    Okada F; Tokumitsu Y; Ui M
    J Neurochem; 1986 Aug; 47(2):454-9. PubMed ID: 3016174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epidermal growth factor stimulates rat cardiac adenylate cyclase through a GTP-binding regulatory protein.
    Nair BG; Rashed HM; Patel TB
    Biochem J; 1989 Dec; 264(2):563-71. PubMed ID: 2513810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of adenylate cyclase by hormones and guanine nucleotides in normal, desensitized, and resensitized rabbit heart.
    Tkachuk VA
    Adv Myocardiol; 1982; 3():305-16. PubMed ID: 6302774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced adenylate cyclase activity of turkey erythrocytes following treatment with beta-adrenergic receptor antagonists.
    Peters JR; Nambi P; Sibley DR; Lefkowitz RJ
    Eur J Pharmacol; 1984 Dec; 107(1):43-52. PubMed ID: 6151904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-co-ordinate development of beta-adrenergic receptors and adenylate cyclase in chick heart.
    Alexander RW; Galper JB; Neer EJ; Smith TW
    Biochem J; 1982 Jun; 204(3):825-30. PubMed ID: 6289805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absence of high-affinity binding sites for beta-adrenergic blockers and lack of adenyl cyclase stimulation to beta-adrenergic stimulators in most normal and adenomatous human thyroid tissues.
    Goretzki PE; Wahl RA; Branscheid D; Roeher HD
    Surgery; 1984 Dec; 96(6):1001-8. PubMed ID: 6150553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conditions associated with the appearance of guanine nucleotide-dependent adenylate cyclase activity in turkey erythrocyte membranes.
    Morris SA; Bilezikian JP
    Biochem Pharmacol; 1982 Sep; 31(17):2783-90. PubMed ID: 7138573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Allosteric equilibrium model explains steady-state coupling of beta-adrenergic receptors to adenylate cyclase in turkey erythrocyte membranes.
    Ugur O; Onaran HO
    Biochem J; 1997 May; 323 ( Pt 3)(Pt 3):765-76. PubMed ID: 9169611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.