These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 6860458)

  • 41. Impairment of object recognition memory by rapamycin inhibition of mTOR in the amygdala or hippocampus around the time of learning or reactivation.
    Jobim PF; Pedroso TR; Werenicz A; Christoff RR; Maurmann N; Reolon GK; Schröder N; Roesler R
    Behav Brain Res; 2012 Mar; 228(1):151-8. PubMed ID: 22178316
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Amygdala and dorsal hippocampus lesions block the effects of GABAergic drugs on memory storage.
    Ammassari-Teule M; Pavone F; Castellano C; McGaugh JL
    Brain Res; 1991 Jun; 551(1-2):104-9. PubMed ID: 1913142
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Facilitation of memory processes in aged rats by subseizure hippocampal stimulation.
    Soumireu-Mourat B; Martinez JL; Jensen RA; McGaugh JL
    Physiol Behav; 1980 Aug; 25(2):263-5. PubMed ID: 7413831
    [No Abstract]   [Full Text] [Related]  

  • 44. The importance of the context in the hippocampus and brain related areas throughout the performance of a fear conditioning task.
    Arias N; Méndez M; Arias JL
    Hippocampus; 2015 Nov; 25(11):1242-9. PubMed ID: 25675878
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Post-training intrahippocampal infusion of protein kinase C inhibitors causes amnesia in rats.
    Jerusalinsky D; Quillfeldt JA; Walz R; Da Silva RC; Medina JH; Izquierdo I
    Behav Neural Biol; 1994 Mar; 61(2):107-9. PubMed ID: 8204076
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Prevention of hypoxia-induced transient amnesia by post-hypoxic hyperoxia.
    Frieder B; Allweis C
    Physiol Behav; 1982 Dec; 29(6):1065-9. PubMed ID: 7163385
    [No Abstract]   [Full Text] [Related]  

  • 47. Time-dependent post-trial changes in the localization of amnestic electrical stimulation sites within the amygdala in rats.
    Gold PE; Hankins LL; Rose RP
    Behav Biol; 1977 May; 20(1):32-40. PubMed ID: 869851
    [No Abstract]   [Full Text] [Related]  

  • 48. Modulation of memory processes induced by stimulation of the entorhinal cortex.
    Martinez JL; McGaugh JL; Hanes CL; Lacob JS
    Physiol Behav; 1977 Jul; 19(1):139-44. PubMed ID: 11803676
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neural systems of the non-human primate forebrain implicated in memory.
    Van Hoesen GW
    Ann N Y Acad Sci; 1985; 444():97-112. PubMed ID: 3925853
    [No Abstract]   [Full Text] [Related]  

  • 50. Peripheral and central adrenergic influences on brain systems involved in the modulation of memory storage.
    McGaugh JL
    Ann N Y Acad Sci; 1985; 444():150-61. PubMed ID: 2990288
    [No Abstract]   [Full Text] [Related]  

  • 51. Anatomical localization of phosphoprotein and glycoprotein substrates of memory.
    Routtenberg A
    Prog Neurobiol; 1979; 12(2):85-113. PubMed ID: 384461
    [No Abstract]   [Full Text] [Related]  

  • 52. Reversible disconnection of the hippocampal-prelimbic cortical circuit impairs spatial learning but not passive avoidance learning in rats.
    Wang GW; Cai JX
    Neurobiol Learn Mem; 2008 Sep; 90(2):365-73. PubMed ID: 18614383
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cue-induced recall of a passive avoidance response by rats with hippocampal lesions.
    Winocur G; Black AH
    Physiol Behav; 1978 Jul; 21(1):39-44. PubMed ID: 567816
    [No Abstract]   [Full Text] [Related]  

  • 54. Effects of hypoxia on memory consolidation: implications for a multistage model of memory.
    Allweis C; Gibbs ME; Ng KT; Hodge RJ
    Behav Brain Res; 1984 Feb; 11(2):117-21. PubMed ID: 6704232
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differential involvement of hippocampal and amygdalar NMDA receptors in contextual and aversive aspects of inhibitory avoidance memory in rats.
    Roesler R; Schröder N; Vianna MR; Quevedo J; Bromberg E; Kapczinski F; Ferreira MB
    Brain Res; 2003 Jun; 975(1-2):207-13. PubMed ID: 12763609
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Permanent and temporary inactivation of the hippocampus impairs T-maze footshock avoidance acquisition and retention.
    Farr SA; Banks WA; La Scola ME; Flood1 JF; Morley JE
    Brain Res; 2000 Jul; 872(1-2):242-9. PubMed ID: 10924702
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dentate gyrus granule cells and memory: electrical stimulation disrupts memory for places rewarded.
    Collier TJ; Miller JS; Travis J; Routtenberg A
    Behav Neural Biol; 1982 Mar; 34(3):227-39. PubMed ID: 7103902
    [No Abstract]   [Full Text] [Related]  

  • 58. The hippocampus, time and working memory.
    Rawlins JN; Tsaltas E
    Behav Brain Res; 1983 Dec; 10(2-3):233-62. PubMed ID: 6661278
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of training technique and amygdala lesions on the acquisition and retention of a taste aversion.
    Mikulka PJ; Freeman FG; Lidstrom P
    Behav Biol; 1977 Apr; 19(4):509-17. PubMed ID: 860985
    [No Abstract]   [Full Text] [Related]  

  • 60. Reversible inactivation of interpeduncular nucleus impairs memory consolidation and retrieval but not learning in rats: A behavioral and molecular study.
    Khatami L; Khodagholi F; Motamedi F
    Behav Brain Res; 2018 Apr; 342():79-88. PubMed ID: 29355671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.