These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 6860637)
1. Resonance energy transfer between cysteine-34 and tryptophan-214 in human serum albumin. Distance measurements as a function of pH. Suzukida M; Le HP; Shahid F; McPherson RA; Birnbaum ER; Darnall DW Biochemistry; 1983 May; 22(10):2415-20. PubMed ID: 6860637 [TBL] [Abstract][Full Text] [Related]
2. Resonance energy transfer between cysteine-34, tryptophan-214, and tyrosine-411 of human serum albumin. Hagag N; Birnbaum ER; Darnall DW Biochemistry; 1983 May; 22(10):2420-7. PubMed ID: 6860638 [TBL] [Abstract][Full Text] [Related]
3. Spatial relationship between the prodan site, Trp-214, and Cys-34 residues in human serum albumin and loss of structure through incremental unfolding. Krishnakumar SS; Panda D Biochemistry; 2002 Jun; 41(23):7443-52. PubMed ID: 12044178 [TBL] [Abstract][Full Text] [Related]
4. Conformational changes in human serum albumin studied by fluorescence and absorption spectroscopy. Distance measurements as a function of pH and fatty acids. Honoré B; Pedersen AO Biochem J; 1989 Feb; 258(1):199-204. PubMed ID: 2930507 [TBL] [Abstract][Full Text] [Related]
5. [Study of conformation transitions in proteins by tryptophan fluorescence and phosphorescence at low temperatures]. Permiakov EA; Deĭkus GIu Mol Biol (Mosk); 1995; 29(2):339-44. PubMed ID: 7783738 [TBL] [Abstract][Full Text] [Related]
6. Characterization of human serum albumin forms with pH. Fluorescence lifetime studies. Amiri M; Jankeje K; Albani JR J Pharm Biomed Anal; 2010 Apr; 51(5):1097-102. PubMed ID: 20005063 [TBL] [Abstract][Full Text] [Related]
7. The modification of the lone tryptophan residue in human serum albumin by 2-hydroxy-5-nitrobenzyl bromide. Characterization of the modified protein and the binding of L-tryptophan and benzodiazepines to the tryptophan-modified albumin. Fehske KJ; Müller WE; Wollert U Hoppe Seylers Z Physiol Chem; 1978 Jun; 359(6):709-17. PubMed ID: 97201 [TBL] [Abstract][Full Text] [Related]
8. Multiple conformational state of human serum albumin around single tryptophan residue at various pH revealed by time-resolved fluorescence spectroscopy. Otosu T; Nishimoto E; Yamashita S J Biochem; 2010 Feb; 147(2):191-200. PubMed ID: 19884191 [TBL] [Abstract][Full Text] [Related]
9. Fluorescence energy transfer studies of human deoxycytidine kinase: role of cysteine 185 in the conformational changes that occur upon substrate binding. Mani RS; Usova EV; Cass CE; Eriksson S Biochemistry; 2006 Mar; 45(11):3534-41. PubMed ID: 16533034 [TBL] [Abstract][Full Text] [Related]
10. Photo-induced riboflavin binding to the tryptophan residues of bovine and human serum albumins. Tapia G; Silva E Radiat Environ Biophys; 1991; 30(2):131-8. PubMed ID: 1857762 [TBL] [Abstract][Full Text] [Related]
11. Energy transfer to a proton-transfer fluorescence probe: tryptophan to a flavonol in human serum albumin. Sytnik A; Litvinyuk I Proc Natl Acad Sci U S A; 1996 Nov; 93(23):12959-63. PubMed ID: 8917526 [TBL] [Abstract][Full Text] [Related]
12. Time-resolved single tryptophan fluorescence in photoactive yellow protein monitors changes in the chromophore structure during the photocycle via energy transfer. Otto H; Hoersch D; Meyer TE; Cusanovich MA; Heyn MP Biochemistry; 2005 Dec; 44(51):16804-16. PubMed ID: 16363794 [TBL] [Abstract][Full Text] [Related]
13. Detection of conformational changes in actin by fluorescence resonance energy transfer between tyrosine-69 and cysteine-374. Miki M Biochemistry; 1991 Nov; 30(45):10878-84. PubMed ID: 1932011 [TBL] [Abstract][Full Text] [Related]
14. Fluorescence of the single tryptophan of cutinase: temperature and pH effect on protein conformation and dynamics. Martinho JM; Santos AM; Fedorov A; Baptista RP; Taipa MA; Cabral JM Photochem Photobiol; 2003 Jul; 78(1):15-22. PubMed ID: 12929743 [TBL] [Abstract][Full Text] [Related]
15. The effect of viscosity on the accessibility of the single tryptophan in human serum albumin. Punyiczki M; Rosenberg A Biophys Chem; 1992 Jan; 42(1):93-100. PubMed ID: 1581518 [TBL] [Abstract][Full Text] [Related]
16. Photodynamically generated bovine serum albumin radicals: evidence for damage transfer and oxidation at cysteine and tryptophan residues. Silvester JA; Timmins GS; Davies MJ Free Radic Biol Med; 1998 Mar; 24(5):754-66. PubMed ID: 9586806 [TBL] [Abstract][Full Text] [Related]
17. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association. Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682 [TBL] [Abstract][Full Text] [Related]
18. Evidence for tryptophan in proximity to histidine and cysteine as essential to the active site of an alkaline protease. Tanksale AM; Vernekar JV; Ghatge MS; Deshpande VV Biochem Biophys Res Commun; 2000 Apr; 270(3):910-7. PubMed ID: 10772924 [TBL] [Abstract][Full Text] [Related]
19. Tryptophan fluorescence quenching by alkaline pH and ternary complex formation in human beta 1 beta 1 and horse EE alcohol dehydrogenases. Ehrig T; Muhoberac BB; Hurley TD; Bosron WF FEBS Lett; 1992 Apr; 300(3):283-5. PubMed ID: 1555656 [TBL] [Abstract][Full Text] [Related]
20. Quenching of red cell tryptophan fluorescence by mercurial compounds. Verkman AS; Lukacovic MF; Tinklepaugh MS; Dix JA Membr Biochem; 1986; 6(4):269-89. PubMed ID: 3574139 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]