These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 6860648)
1. Nuclear magnetic resonance studies on calmodulin: spectral assignments in the calcium-free state. Ikura M; Hiraoki T; Hikichi K; Mikuni T; Yazawa M; Yagi K Biochemistry; 1983 May; 22(10):2568-72. PubMed ID: 6860648 [TBL] [Abstract][Full Text] [Related]
2. Nuclear magnetic resonance studies on calmodulin: calcium-induced conformational change. Ikura M; Hiraoki T; Hikichi K; Mikuni T; Yazawa M; Yagi K Biochemistry; 1983 May; 22(10):2573-9. PubMed ID: 6683101 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen-1 nuclear magnetic resonance investigation on bovine cardiac troponin C. Comparison of tyrosyl assignments and calcium-induced structural changes to those of two homologous proteins, rabbit skeletal troponin C and bovine brain calmodulin. Hincke MT; Sykes BD; Kay CM Biochemistry; 1981 May; 20(11):3286-92. PubMed ID: 7248284 [TBL] [Abstract][Full Text] [Related]
4. A study of the interactions between residues in the C-terminal half of calmodulin by one and two-dimensional NMR methods and computer modelling. Aulabaugh A; Niemczura WP; Blundell TL; Gibbons WA Eur J Biochem; 1984 Sep; 143(2):409-18. PubMed ID: 6088236 [TBL] [Abstract][Full Text] [Related]
5. Structural characterization of the interactions between calmodulin and skeletal muscle myosin light chain kinase: effect of peptide (576-594)G binding on the Ca2+-binding domains. Seeholzer SH; Wand AJ Biochemistry; 1989 May; 28(9):4011-20. PubMed ID: 2752005 [TBL] [Abstract][Full Text] [Related]
6. Influence of Ca2+ and trifluoperazine on the structure of calmodulin. A 1H-nuclear magnetic resonance study. Krebs J; Carafoli E Eur J Biochem; 1982 Jun; 124(3):619-27. PubMed ID: 7106112 [TBL] [Abstract][Full Text] [Related]
7. NMR solution structure of a complex of calmodulin with a binding peptide of the Ca2+ pump. Elshorst B; Hennig M; Försterling H; Diener A; Maurer M; Schulte P; Schwalbe H; Griesinger C; Krebs J; Schmid H; Vorherr T; Carafoli E Biochemistry; 1999 Sep; 38(38):12320-32. PubMed ID: 10493800 [TBL] [Abstract][Full Text] [Related]
8. Two-dimensional NMR studies of staphylococcal nuclease: evidence for conformational heterogeneity from hydrogen-1, carbon-13, and nitrogen-15 spin system assignments of the aromatic amino acids in the nuclease H124L-thymidine 3',5'-bisphosphate-Ca2+ ternary complex. Wang JF; Hinck AP; Loh SN; Markley JL Biochemistry; 1990 May; 29(17):4242-53. PubMed ID: 2361141 [TBL] [Abstract][Full Text] [Related]
9. Proton nuclear magnetic resonance studies on the kinetics of tryptic fragments of calmodulin upon calcium binding. Ikura M Biochim Biophys Acta; 1986 Aug; 872(3):195-200. PubMed ID: 3089287 [TBL] [Abstract][Full Text] [Related]
10. NMR spectroscopy of exchangeable protons of glucoamylase and of complexes with inhibitors in the 9-15-ppm range. Firsov LM; Neustroev KN; Aleshin AE; Metzler CM; Metzler DE; Scott RD; Stoffer B; Christensen T; Svensson B Eur J Biochem; 1994 Jul; 223(1):293-302. PubMed ID: 8033904 [TBL] [Abstract][Full Text] [Related]
11. High field proton NMR studies of tryptic fragments of calmodulin: a comparison with the native protein. Aulabaugh A; Niemczura WP; Gibbons WA Biochem Biophys Res Commun; 1984 Jan; 118(1):225-32. PubMed ID: 6696757 [TBL] [Abstract][Full Text] [Related]
12. Hydrogen bonding in the carboxyl-terminal half-fragment 78-148 of calmodulin as studied by two-dimensional nuclear magnetic resonance. Ikura M; Minowa O; Hikichi K Biochemistry; 1985 Jul; 24(16):4264-9. PubMed ID: 4052396 [TBL] [Abstract][Full Text] [Related]
13. High resolution 1H-NMR studies of Des-(B26-B30)-insulin; assignment of resonances and properties of aromatic residues. Hua QX; Chen YJ; Wang CC; Wang DC; Roberts GC Biochim Biophys Acta; 1989 Feb; 994(2):114-20. PubMed ID: 2642711 [TBL] [Abstract][Full Text] [Related]
14. A proton nuclear magnetic resonance and molecular modeling study of cardiac troponin C. Calcium dependence and aromatic spectral assignments. MacLachlan LK; Reid DG; Carter N J Biol Chem; 1990 Jun; 265(17):9754-63. PubMed ID: 2351671 [TBL] [Abstract][Full Text] [Related]
15. 1H NMR studies of calmodulin. Resonance assignments by use of tryptic fragments. Dalgarno DC; Klevit RE; Levine BA; Williams RJ; Dobrowolski Z; Drabikowski W Eur J Biochem; 1984 Jan; 138(2):281-9. PubMed ID: 6697987 [TBL] [Abstract][Full Text] [Related]
16. Individual assignments of the methyl resonances in the 1H nuclear magnetic resonance spectrum of the basic pancreatic trypsin inhibitor. Wüthrich K; Wagner G; Richarz R; Perkins SJ Biochemistry; 1978 Jun; 17(12):2253-63. PubMed ID: 307961 [TBL] [Abstract][Full Text] [Related]
18. High-resolution proton nuclear magnetic resonance studies of the glucocerebrosidase activator protein from Gaucher spleen. Sheh L; Glew RH; Bothner-By AA; Mishra PK Biochemistry; 1985 Nov; 24(23):6645-51. PubMed ID: 4084549 [TBL] [Abstract][Full Text] [Related]
19. 1H nuclear magnetic resonance titration curves and microenvironments of aromatic residues in bovine pancreatic ribonuclease A. Tanokura M J Biochem; 1983 Jul; 94(1):51-62. PubMed ID: 6619120 [TBL] [Abstract][Full Text] [Related]
20. Complete assignment of the aromatic proton magnetic resonance spectrum of the kringle 1 domain from human plasminogen: structure of the ligand-binding site. Motta A; Laursen RA; Llinás M; Tulinsky A; Park CH Biochemistry; 1987 Jun; 26(13):3827-36. PubMed ID: 2820478 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]