These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 6860707)

  • 1. NADH and NADPH inhibit lipid peroxidation promoted by hydroperoxides in rat liver microsomes.
    Cavallini L; Valente M; Bindoli A
    Biochim Biophys Acta; 1983 Jul; 752(2):339-45. PubMed ID: 6860707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prevention of lipid peroxidation by NAD(P)H in rat liver submitochondrial particles.
    Bindoli A; Valente M; Cavallini L
    Biochem Int; 1987 Jul; 15(1):255-62. PubMed ID: 3453688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NADPH- and linoleic acid hydroperoxide-induced lipid peroxidation and destruction of cytochrome P-450 in hepatic microsomes.
    Iba MM; Mannering GJ
    Biochem Pharmacol; 1987 May; 36(9):1447-55. PubMed ID: 3579983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of NADPH and cumene hydroperoxide-stimulated lipid peroxidation in mouse hepatic microsomes.
    Kulkarni AP; Hodgson E
    Int J Biochem; 1981; 13(7):811-6. PubMed ID: 6268465
    [No Abstract]   [Full Text] [Related]  

  • 5. Inhibition of lipid peroxidation by heme-nonapeptide derived from cytochrome c.
    Vodnyánszky L; Marton A; Venekei I; Végh M; Blázovits A; Kittel A; Horváth I
    Biochim Biophys Acta; 1985 Jul; 835(2):411-4. PubMed ID: 2988642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytochrome P-450 deficiency and resistance to t-butyl hydroperoxide of hepatoma microsomal lipid peroxidation.
    Minotti G; Borrello S; Palombini G; Galeotti T
    Biochim Biophys Acta; 1986 Apr; 876(2):220-5. PubMed ID: 3955061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for a predominantly NADH-dependent O-dealkylating system in rat hepatic microsomes.
    Kuwahara S; Mannering GJ
    Biochem Pharmacol; 1985 Dec; 34(24):4215-28. PubMed ID: 3935115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Participation of lipid radicals and active oxygen forms in the peroxidation of microsomal membrane lipids induced by organic hydroperoxides].
    Savov VM; Kagan VE; Prilipko LL
    Vopr Med Khim; 1980; 26(5):623-7. PubMed ID: 7423878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of diethyldithiocarbamate on the lipid peroxidation of rat-liver microsomes and intact hepatocytes.
    Koster JF; van Berkel TJ
    Biochem Pharmacol; 1983 Nov; 32(22):3307-10. PubMed ID: 6316977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism of liver microsomal lipid peroxidation.
    Pederson TC; Aust SD
    Biochim Biophys Acta; 1975 Apr; 385(2):232-41. PubMed ID: 236006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of PGBx and peroxides with cytochrome c and inhibition of lipid peroxidation.
    Narasimhulu S; Brown EM
    Arch Biochem Biophys; 1985 Dec; 243(2):461-9. PubMed ID: 3002276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic determination of membrane lipid peroxidation.
    Maiorino M; Roveri A; Ursini F; Gregolin C
    J Free Radic Biol Med; 1985; 1(3):203-7. PubMed ID: 3836243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of cumene hydroperoxide- and NADPH/Fe3+/ADP-induced lipid peroxidation in heart and liver submitochondrial particles. Mechanisms of protection by succinate.
    Cavallini L; Valente M; Bindoli A
    Biochim Biophys Acta; 1984 Oct; 795(3):466-72. PubMed ID: 6089907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADH- and NADPH-dependent lipid peroxidation in bovine heart submitochondrial particles. Dependence on the rate of electron flow in the respiratory chain and an antioxidant role of ubiquinol.
    Takayanagi R; Takeshige K; Minakami S
    Biochem J; 1980 Dec; 192(3):853-60. PubMed ID: 7236242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased NADH-dependent production of reactive oxygen intermediates by microsomes after chronic ethanol consumption: comparisons with NADPH.
    Dicker E; Cederbaum AI
    Arch Biochem Biophys; 1992 Mar; 293(2):274-80. PubMed ID: 1311163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic and molecular aspects of the antioxidant effect of menadione in hepatic microsomes.
    Tampo Y; Yonaha M
    Arch Biochem Biophys; 1996 Oct; 334(1):163-74. PubMed ID: 8837752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunochemical study on the pathway of electron flow in reduced nicotinamide adenine dinucleotide-dependent microsomal lipid peroxidation.
    Hirokata Y; Shigematsu A; Omura T
    J Biochem; 1978 Feb; 83(2):431-40. PubMed ID: 24622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of NADPH-dependent lipid peroxidation and a possible initiation-preventing antioxidant effect of microsomal (+)-alpha-tocopherol.
    Venekei I
    Biochim Biophys Acta; 1987 Feb; 917(3):347-55. PubMed ID: 3801509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidant effect of cupric complex on NADPH-dependent lipid peroxidation in rat liver microsomes.
    Yamashoji S; Kajimoto G
    Biochim Biophys Acta; 1981 Dec; 666(3):442-5. PubMed ID: 7326253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The stimulatory effects of asbestos on NADPH-dependent lipid peroxidation in rat liver microsomes.
    Fontecave M; Mansuy D; Jaouen M; Pezerat H
    Biochem J; 1987 Jan; 241(2):561-5. PubMed ID: 3036068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.