These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 6860823)

  • 61. Activity-dependent developmental plasticity of the auditory brain stem in children who use cochlear implants.
    Gordon KA; Papsin BC; Harrison RV
    Ear Hear; 2003 Dec; 24(6):485-500. PubMed ID: 14663348
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Clinical application of dichotic multiple-stimulus auditory steady-state responses in high-risk newborns and young children.
    Luts H; Desloovere C; Wouters J
    Audiol Neurootol; 2006; 11(1):24-37. PubMed ID: 16219992
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Physiological detection of interaural phase differences.
    Ross B; Tremblay KL; Picton TW
    J Acoust Soc Am; 2007 Feb; 121(2):1017-27. PubMed ID: 17348524
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Sound localization, sound lateralization, and binaural masking level differences in young children with normal hearing.
    Van Deun L; van Wieringen A; Van den Bogaert T; Scherf F; Offeciers FE; Van de Heyning PH; Desloovere C; Dhooge IJ; Deggouj N; De Raeve L; Wouters J
    Ear Hear; 2009 Apr; 30(2):178-90. PubMed ID: 19194296
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Evoked otoacoustic emissions and auditory brainstem responses: concordance in hearing screening among high-risk children.
    Llanes EG; Chiong CM
    Acta Otolaryngol; 2004 May; 124(4):387-90. PubMed ID: 15224859
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effect of repetition rate on middle latency auditory evoked potentials in humans.
    Versino M; Canegalli F; Bergamaschi R; Callieco R; Cosi V
    Boll Soc Ital Biol Sper; 1991 Jan; 67(1):83-8. PubMed ID: 1888476
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Speech-evoked cortical auditory responses in children with normal hearing.
    Almeqbel A
    S Afr J Commun Disord; 2013 Dec; 60():38-43. PubMed ID: 25158372
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Rotatory and collic vestibular evoked myogenic potential testing in normal-hearing and hearing-impaired children.
    Maes L; De Kegel A; Van Waelvelde H; Dhooge I
    Ear Hear; 2014; 35(2):e21-32. PubMed ID: 24556969
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The auditory evoked potential and paediatric anaesthesia.
    O'Kelly SW; Smith DC; Pilkington SN
    Br J Anaesth; 1995 Oct; 75(4):428-30. PubMed ID: 7488482
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Multiple auditory steady-state responses in children and adults with normal hearing, sensorineural hearing loss, or auditory neuropathy.
    Attias J; Buller N; Rubel Y; Raveh E
    Ann Otol Rhinol Laryngol; 2006 Apr; 115(4):268-76. PubMed ID: 16676823
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Spectral composition of infant auditory brainstem responses: implications for filtering.
    Spivak LG
    Audiology; 1993; 32(3):185-94. PubMed ID: 8489479
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Cortical auditory evoked potential (P1): a potential objective indicator for auditory rehabilitation outcome.
    Thabet MT; Said NM
    Int J Pediatr Otorhinolaryngol; 2012 Dec; 76(12):1712-8. PubMed ID: 22939592
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Brainstem auditory evoked potentials and middle latency auditory evoked potentials in young children.
    Luo JJ; Khurana DS; Kothare SV
    J Clin Neurosci; 2013 Mar; 20(3):383-8. PubMed ID: 23266312
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The effects of low-pass filtering on the primary cortical auditory potential of the rat.
    Shaw NA
    J Neurosci Methods; 1995 Jul; 59(2):209-16. PubMed ID: 8531489
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Optimal digital filters for analyzing the mid-latency auditory P50 event-related potential in patients with Alzheimer's disease.
    Liljander S; Holm A; Keski-Säntti P; Partanen JV
    J Neurosci Methods; 2016 Jun; 266():50-67. PubMed ID: 27015794
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Inconsistency of auditory middle latency and steady-state responses in infants.
    Stapells DR; Galambos R; Costello JA; Makeig S
    Electroencephalogr Clin Neurophysiol; 1988; 71(4):289-95. PubMed ID: 2454794
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Threshold prediction in children with sensorioneural hearing loss using the auditory steady-state responses and tone-evoked auditory brain stem response.
    Rodrigues GR; Lewis DR
    Int J Pediatr Otorhinolaryngol; 2010 May; 74(5):540-6. PubMed ID: 20303185
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Steady-state evoked potential and behavioral hearing thresholds in a group of children with absent click-evoked auditory brain stem response.
    Rance G; Dowell RC; Rickards FW; Beer DE; Clark GM
    Ear Hear; 1998 Feb; 19(1):48-61. PubMed ID: 9504272
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Beneficial auditory and cognitive effects of auditory brainstem implantation in children.
    Colletti L
    Acta Otolaryngol; 2007 Sep; 127(9):943-6. PubMed ID: 17712673
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effect of high-pass filter on auditory brain stem responses to tone pips.
    Suzuki T; Horiuchi K
    Scand Audiol; 1977; 6(3):123-6. PubMed ID: 929088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.