These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 6861740)

  • 21. Alteration in the nucleosome and chromatin structures upon interaction with platinum coordination complexes.
    Houssier C; Depauw-Gillet MC; Hacha R; Fredericq E
    Biochim Biophys Acta; 1983 Apr; 739(3):317-25. PubMed ID: 6830809
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The temperature and pH dependence of conformational transitions of the chromatin subunit.
    Gordon VC; Schumaker VN; Olins DE; Knobler CM; Horwitz J
    Nucleic Acids Res; 1979 Aug; 6(12):3845-58. PubMed ID: 40207
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fractionation of nucleosomes by salt elution from micrococcal nuclease-digested nuclei.
    Sanders MM
    J Cell Biol; 1978 Oct; 79(1):97-109. PubMed ID: 701381
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of the changes in the structure and hydration of the nucleosome core particle at moderate ionic strengths.
    Dong F; Nelson C; Ausio J
    Biochemistry; 1990 Nov; 29(47):10710-6. PubMed ID: 2271678
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reversibility of the low-salt transition of chromatin core particles.
    Libertini LJ; Small EW
    Nucleic Acids Res; 1987 Aug; 15(16):6655-64. PubMed ID: 3628003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flow linear dichroism supports an accordion model for the salt-induced condensation of chromatin.
    Kubista M; Nielsen PE; Nordén B
    Biochem Pharmacol; 1988 May; 37(9):1813-4. PubMed ID: 3377840
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of low ionic strength on the circular dichroic spectrum of chromatin and nucleosomal subunits.
    Krueger RC
    Arch Biochem Biophys; 1984 May; 231(1):183-8. PubMed ID: 6721497
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chromatin models. The ionic strength dependence of model histone-DNA interactions: circular dichroism studies of lysine-leucine polypeptide-DNA complexes.
    Ong EC; Snell C; Fasman GD
    Biochemistry; 1976 Feb; 15(3):468-77. PubMed ID: 1252405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sodium butyrate induced structural changes in HeLa cell chromatin.
    Reczek PR; Weissman D; Hüvös PE; Fasman GD
    Biochemistry; 1982 Mar; 21(5):993-1002. PubMed ID: 7074068
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of various salts and pH on the stability of the nucleosome in chromatin fragments.
    Ni X; Cole RD
    Biochemistry; 1994 Aug; 33(31):9276-84. PubMed ID: 8049228
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Structure of the nucleosome chain. I. Role of histone H1 in oligonucleosome compaction].
    Osipova TN; Pospelov VA; Svetlikova SB; Ilina ID; Vorobb'ev
    Mol Biol (Mosk); 1980; 14(3):469-75. PubMed ID: 7402195
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Condensation of dinucleosomes by individual subfractions of H1 histone.
    Liao LW; Cole RD
    J Biol Chem; 1981 Oct; 256(19):10124-8. PubMed ID: 7275970
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reversible in vitro packing of nucleosomal filaments into globular supranucleosomal units in chromatin of whole chick erythrocyte nuclei.
    Zentgraf H; Müller U; Franke WW
    Eur J Cell Biol; 1980 Dec; 23(1):171-88. PubMed ID: 7460964
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Linker histone H1 per se can induce three-dimensional folding of chromatin fiber.
    Hizume K; Yoshimura SH; Takeyasu K
    Biochemistry; 2005 Oct; 44(39):12978-89. PubMed ID: 16185066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in chromatin chain flexibility during condensation induced by sodium chloride, as evidenced by electric dichroism.
    Marquet R; Favazza M; Koch MH; Houssier C
    FEBS Lett; 1990 Mar; 262(1):131-4. PubMed ID: 2318306
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Does hypomethylation of linker DNA play a role in chromatin condensation.
    Caiafa P; Reale A; Santoro R; D'Erme M; Marenzi S; Zardo G; Strom R
    Gene; 1995 May; 157(1-2):247-51. PubMed ID: 7607500
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conformation of the HMG17-nucleosome complex.
    Zama M; Mita K; Ichimura S
    Biochim Biophys Acta; 1984 Oct; 783(1):100-4. PubMed ID: 6477923
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Involvement of higher order chromatin structures in metaphase chromosome organization.
    Labhart P; Koller T; Wunderli H
    Cell; 1982 Aug; 30(1):115-21. PubMed ID: 7127469
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stability and reversibility of higher ordered structure of interphase chromatin: continuity of deoxyribonucleic acid is not required for maintenance of folded structure.
    Ruiz-Carrillo A; Puigdomènech P; Eder G; Lurz R
    Biochemistry; 1980 Jun; 19(12):2544-54. PubMed ID: 6772200
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synchrotron X-ray scattering study of chromatin condensation induced by monovalent salt: analysis of the small-angle scattering data.
    Fujiwara S; Inoko Y; Ueki T
    J Biochem; 1989 Jul; 106(1):119-25. PubMed ID: 2777743
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.