These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 6862504)

  • 41. Factors shaping the tone level sensitivity of single neurons in posterior field of cat auditory cortex.
    Phillips DP; Semple MN; Kitzes LM
    J Neurophysiol; 1995 Feb; 73(2):674-86. PubMed ID: 7760126
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Codes for sound-source location in nontonotopic auditory cortex.
    Middlebrooks JC; Xu L; Eddins AC; Green DM
    J Neurophysiol; 1998 Aug; 80(2):863-81. PubMed ID: 9705474
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stochastic transitions into silence cause noise correlations in cortical circuits.
    Mochol G; Hermoso-Mendizabal A; Sakata S; Harris KD; de la Rocha J
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3529-34. PubMed ID: 25739962
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Neuronal electrical reactions of the 2nd auditory area of the cerebral cortex in cats to tones of a characteristic frequency].
    Volkov IO; Galaziuk AV
    Fiziol Zh (1978); 1986; 32(6):733-41. PubMed ID: 3028873
    [No Abstract]   [Full Text] [Related]  

  • 45. Kindling changes burst firing, neural synchrony and tonotopic organization of cat primary auditory cortex.
    Valentine PA; Teskey GC; Eggermont JJ
    Cereb Cortex; 2004 Aug; 14(8):827-39. PubMed ID: 15054056
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neural responses in primary auditory cortex mimic psychophysical, across-frequency-channel, gap-detection thresholds.
    Eggermont JJ
    J Neurophysiol; 2000 Sep; 84(3):1453-63. PubMed ID: 10980018
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [The interaction of neurons characterized by a tonic reaction to sound with other neurons in the cat auditory cortex].
    Volkov IO; Galaziuk AV; DembnovetskiÄ­ OF
    Neirofiziologiia; 1989; 21(5):613-20. PubMed ID: 2601762
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spectrotemporal organization of excitatory and inhibitory receptive fields of cat posterior auditory field neurons.
    Loftus WC; Sutter ML
    J Neurophysiol; 2001 Jul; 86(1):475-91. PubMed ID: 11431526
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Responses of neurons in the primary auditory cortex of the cat to the auditory motion stimuli with variable interaural delay].
    Nikitin NI; Varfolomeev AL; Kotelenko LM
    Ross Fiziol Zh Im I M Sechenova; 2003 Jun; 89(6):625-38. PubMed ID: 12966703
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Generation of correlated spike trains.
    Brette R
    Neural Comput; 2009 Jan; 21(1):188-215. PubMed ID: 19431282
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fear conditioning enhances different temporal components of tone-evoked spike trains in auditory cortex and lateral amygdala.
    Quirk GJ; Armony JL; LeDoux JE
    Neuron; 1997 Sep; 19(3):613-24. PubMed ID: 9331352
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Properties of correlated neural activity clusters in cat auditory cortex resemble those of neural assemblies.
    Eggermont JJ
    J Neurophysiol; 2006 Aug; 96(2):746-64. PubMed ID: 16835364
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Unit responses of the auditory cortex of waking cats at rest and after defensive conditioning.
    Dumenko VN; Sachenko VV
    Neurosci Behav Physiol; 1981; 11(4):406-12. PubMed ID: 7343881
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Correlation between neural spike trains increases with firing rate.
    de la Rocha J; Doiron B; Shea-Brown E; Josić K; Reyes A
    Nature; 2007 Aug; 448(7155):802-6. PubMed ID: 17700699
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Suppression of auditory cortical activities in awake cats by pure tone stimuli.
    Qin L; Sato Y
    Neurosci Lett; 2004 Jul; 365(3):190-4. PubMed ID: 15246546
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reduction of information redundancy in the ascending auditory pathway.
    Chechik G; Anderson MJ; Bar-Yosef O; Young ED; Tishby N; Nelken I
    Neuron; 2006 Aug; 51(3):359-68. PubMed ID: 16880130
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A pattern grouping algorithm for analysis of spatiotemporal patterns in neuronal spike trains. 2. Application to simultaneous single unit recordings.
    Tetko IV; Villa AE
    J Neurosci Methods; 2001 Jan; 105(1):15-24. PubMed ID: 11166362
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Intrinsic electrophysiology of neurons in thalamorecipient layers of developing rat auditory cortex.
    Metherate R; Aramakis VB
    Brain Res Dev Brain Res; 1999 Jun; 115(2):131-44. PubMed ID: 10407131
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nonlinear principal components analysis of neuronal spike train data.
    Fotheringhame D; Baddeley R
    Biol Cybern; 1997 Oct; 77(4):283-8. PubMed ID: 9394446
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neuron discharges in the rat auditory cortex during electrical intracortical stimulation.
    Maldonado PE; Altman JA; Gerstein GL
    Neurosci Behav Physiol; 1998; 28(1):48-59. PubMed ID: 9513978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.