BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 6862576)

  • 1. Kidney function and sodium handling in the pregnant spontaneously hypertensive rat.
    Lindheimer MD; Katz AI; Koeppen BM; Ordóñez NG; Oparil S
    Hypertension; 1983; 5(4):498-506. PubMed ID: 6862576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of hypertension on maternal adaptations to pregnancy: experimental study on spontaneously hypertensive rats.
    Peraçoli JC; Rudge MV; Sartori MS; da Silva Franco RJ
    Sao Paulo Med J; 2001 Mar; 119(2):54-8. PubMed ID: 11276166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological and immunopathological consequences of active immunization of spontaneously hypertensive and normotensive rats against murine renin.
    Michel JB; Sayah S; Guettier C; Nussberger J; Philippe M; Gonzalez MF; Carelli C; Galen FX; Menard J; Corvol P
    Circulation; 1990 Jun; 81(6):1899-910. PubMed ID: 2188756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of angiotensin II type-1 receptor antisense oligonucleotides on renal function in spontaneously hypertensive rats.
    Yoneda M; Sanada H; Yatabe J; Midorikawa S; Hashimoto S; Sasaki M; Katoh T; Watanabe T; Andrews PM; Jose PA; Felder RA
    Hypertension; 2005 Jul; 46(1):58-65. PubMed ID: 15956107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide-mediated changes in vascular reactivity in pregnancy in spontaneously hypertensive rats.
    Chu ZM; Beilin LJ
    Br J Pharmacol; 1993 Nov; 110(3):1184-8. PubMed ID: 8298807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Renal function of conscious spontaneously hypertensive rats.
    Beirewaltes WH; Arendshorst WJ
    Circ Res; 1978 May; 42(5):721-6. PubMed ID: 639195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blunted norepinephrine natriuresis in the isolated spontaneously hypertensive rat kidney.
    Steele TH; Underwood JL
    Am J Physiol; 1978 Nov; 235(5):F425-9. PubMed ID: 727261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal haemodynamics and total body sodium in immature spontaneously hypertensive and Wistar-Kyoto rats.
    Harrap SB; Doyle AE
    J Hypertens Suppl; 1986 Oct; 4(3):S249-52. PubMed ID: 3465900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maternal adaptation in pregnant hypertensive rats: improvement of vascular and inflammatory variables and oxidative damage in the kidney.
    Iacono A; Bianco G; Mattace Raso G; Esposito E; d'Emmanuele di Villa Bianca R; Sorrentino R; Cuzzocrea S; Calignano A; Autore G; Meli R
    Am J Hypertens; 2009 Jul; 22(7):777-83. PubMed ID: 19373215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renal hemodynamics and sodium excretion in stroke-prone spontaneously hypertensive rats.
    Nagaoka A; Kakihana M; Suno M; Hamajo K
    Am J Physiol; 1981 Sep; 241(3):F244-9. PubMed ID: 7282927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered pressure-natriuresis relationship in young spontaneously hypertensive rats.
    Roman RJ
    Hypertension; 1987 Jun; 9(6 Pt 2):III130-6. PubMed ID: 3596779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term captopril treatment restores natriuresis after carotid baroreceptor activation in the SHR.
    Valentin JP; Mazbar SA; Humphreys MH
    Am J Physiol; 1997 Jul; 273(1 Pt 2):R70-9. PubMed ID: 9249534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angiotensin II: enhanced renal responsiveness in young genetically hypertensive rats.
    Vyas SJ; Jackson EK
    J Pharmacol Exp Ther; 1995 May; 273(2):768-77. PubMed ID: 7752079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of nitric oxide in the autoregulation of renal blood flow and glomerular filtration rate in aging spontaneously hypertensive rats.
    Kvam FI; Ofstad J; Iversen BM
    Kidney Blood Press Res; 2000; 23(6):376-84. PubMed ID: 11070417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of complement 3 in the salt-sensitive hypertension by activation of renal renin-angiotensin system in spontaneously hypertensive rats.
    Negishi E; Fukuda N; Otsuki T; Katakawa M; Komatsu K; Chen L; Tanaka S; Kobayashi H; Hatanaka Y; Ueno T; Endo M; Mashimo T; Nishiyama A; Abe M
    Am J Physiol Renal Physiol; 2018 Dec; 315(6):F1747-F1758. PubMed ID: 30256128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of renal denervation on pressure-natriuresis in spontaneously hypertensive rats.
    Kubota J; Nishimura H; Ueyama M; Kawamura K
    Jpn Circ J; 1993 Nov; 57(11):1097-105. PubMed ID: 8230686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced renal response to intracerebroventricular angiotensins II and III in spontaneously hypertensive rats.
    Jin JS; Hsieh PS; Huang WC
    Brain Res; 1992 Jun; 582(2):268-76. PubMed ID: 1393549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal cortical and papillary blood flow in spontaneously hypertensive rats.
    Roman RJ; Kaldunski ML
    Hypertension; 1988 Jun; 11(6 Pt 2):657-63. PubMed ID: 3391676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of uninephrectomy on renal structural properties in spontaneously hypertensive rats.
    Kinuno H; Tomoda F; Koike T; Takata M; Inoue H
    Clin Exp Pharmacol Physiol; 2005 Mar; 32(3):173-8. PubMed ID: 15743399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of thromboxane in control of arterial pressure and renal function in young spontaneously hypertensive rats.
    Grone HJ; Grippo RS; Arendshorst WJ; Dunn MJ
    Am J Physiol; 1986 Mar; 250(3 Pt 2):F488-96. PubMed ID: 3953827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.