These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 6863032)

  • 1. Changes in alkaline phosphatase activity in rabbit articular cartilage associated with ageing and joint contracture.
    Ohta N; Kawai N; Kawaji W; Hirano H
    Histochemistry; 1983; 77(4):417-22. PubMed ID: 6863032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in permeability of rabbit articular cartilage caused by joint contracture as revealed by the peroxidase method.
    Nakamura K; Ohta N; Kawaji W; Takata K; Hirano H
    Arch Histol Jpn; 1984 Nov; 47(5):541-7. PubMed ID: 6532371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes of articular cartilage after immobilization in a rat knee contracture model.
    Hagiwara Y; Ando A; Chimoto E; Saijo Y; Ohmori-Matsuda K; Itoi E
    J Orthop Res; 2009 Feb; 27(2):236-42. PubMed ID: 18683886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and ageing of the articular cartilage of the rabbit knee joint: distribution of the fibrillar collagens.
    Bland YS; Ashhurst DE
    Anat Embryol (Berl); 1996 Dec; 194(6):607-19. PubMed ID: 8957536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastructural localisation of alkaline phosphatase activity in osteoarthritic human articular cartilage.
    Rees JA; Ali SY
    Ann Rheum Dis; 1988 Sep; 47(9):747-53. PubMed ID: 3178315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative, enzymohistochemical study of temporomandibular joint and knee joint in growing stage.
    Okoshi M
    Bull Tokyo Med Dent Univ; 1974 Aug; 21 Suppl(0):72-4. PubMed ID: 4528968
    [No Abstract]   [Full Text] [Related]  

  • 7. [Histoenzymatic characteristics of the articular cartilage in ontogeny and in osteoarthrosis deformans].
    Tverdynin MS; Chernysheva ES
    Arkh Patol; 1985; 47(1):19-24. PubMed ID: 2983644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological changes in rabbit articular cartilages experimentally induced by joint contracture--in association with aging.
    Ohta N; Kawai N; Kawaji W; Hirano H
    Okajimas Folia Anat Jpn; 1981 Aug; 58(3):205-20. PubMed ID: 7329641
    [No Abstract]   [Full Text] [Related]  

  • 9. An ultrastructural study of the marginal transitional zone in the rabbit knee joint.
    Thompson AM; Stockwell RA
    J Anat; 1983 Jun; 136(Pt 4):701-13. PubMed ID: 6885623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chondrocyte ultrastructure in exercise and experimental osteoarthrosis. A stereologic morphometric study of articular cartilage of young rabbits using transmission electron microscopy.
    Paukkonen K; Helminen HJ
    Clin Orthop Relat Res; 1987 Nov; (224):284-8. PubMed ID: 3665251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in articular cartilage following intraarticular injection of tritiated glyceryl trioleate.
    Sprinz R; Stockwell RA
    J Anat; 1976 Sep; 122(Pt 1):91-112. PubMed ID: 977482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteoarthritis in the temporo-mandibular joint (TMJ) of aged mice and the in vitro effect of TGF-beta 1 on cell proliferation, matrix synthesis, and alkaline phosphatase activity.
    Livne E; Laufer D; Blumenfeld I
    Microsc Res Tech; 1997 May; 37(4):314-23. PubMed ID: 9185153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The development of articular cartilage: I. The spatial and temporal patterns of collagen types.
    Morrison EH; Ferguson MW; Bayliss MT; Archer CW
    J Anat; 1996 Aug; 189 ( Pt 1)(Pt 1):9-22. PubMed ID: 8771392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrastructural localization of alkaline phosphatase activity in the normal and osteochondrotic joint cartilage of growing pigs.
    Ekman S; Rodriguez-Martinez H
    Acta Anat (Basel); 1991; 140(1):26-33. PubMed ID: 2028727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The calcified-noncalcified cartilage interface: the tidemark.
    Havelka S; Horn V; Spohrová D; Valouch P
    Acta Biol Hung; 1984; 35(2-4):271-9. PubMed ID: 6242456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphological aspects of rat metaphyseal cartilage pericellular matrix.
    Quacci D; Dell'Orbo C; Pazzaglia UE
    J Anat; 1990 Aug; 171():193-205. PubMed ID: 2150515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative morphological and biochemical investigations on the effects of physical exercise and immobilization on the articular cartilage of young rabbits.
    Paukkonen K; Helminen HJ; Tammi M; Jurvelin J; Kiviranta I; Säämänen AM
    Acta Biol Hung; 1984; 35(2-4):293-304. PubMed ID: 6242458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apoptosis and p53 expression in chondrocytes relate to degeneration in articular cartilage of immobilized knee joints.
    Okazaki R; Sakai A; Ootsuyama A; Sakata T; Nakamura T; Norimura T
    J Rheumatol; 2003 Mar; 30(3):559-66. PubMed ID: 12610817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hexosaminidase and alkaline phosphatase activities in articular chondrocytes and relationship to cell culture conditions.
    Mokonjimobe E; Hecquet C; Robic D; Bourbouze R; Adolphe M
    Experientia; 1992 Apr; 48(4):396-8. PubMed ID: 1533843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decrease of proteoglycan granule number but increase of their size in articular cartilage of young rabbits after physical exercise and immobilization by splinting.
    Paukkonen K; Helminen HJ
    Anat Rec; 1987 Sep; 219(1):45-52. PubMed ID: 3688460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.