BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 6863061)

  • 1. Magnetic induction heating of tissue: numerical evaluation of tumor temperature distributions.
    Halac S; Roemer RB; Oleson JR; Cetas TC
    Int J Radiat Oncol Biol Phys; 1983 Jun; 9(6):881-91. PubMed ID: 6863061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uniform regional heating of the lower trunk: numerical evaluation of tumor temperature distributions.
    Halac S; Roemer RB; Oleson JR; Cetas TC
    Int J Radiat Oncol Biol Phys; 1983 Dec; 9(12):1833-40. PubMed ID: 6662751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical temperature distributions for solenoidal-type hyperthermia systems.
    Strohbehn JW
    Med Phys; 1982; 9(5):673-82. PubMed ID: 7155068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative evaluation of hyperthermia heating modalities. I. Numerical analysis of thermal dosimetry bracketing cases.
    Roemer RB; Cetas TC; Oleson JR; Halac S; Matloubieh AY
    Radiat Res; 1984 Dec; 100(3):450-72. PubMed ID: 6505138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical temperature profiles for concentric coil induction heating devices in a two-dimensional, axi-asymmetric, inhomogeneous patient model.
    Paulsen KD; Strohbehn JW; Hill SC; Lynch DR; Kennedy FE
    Int J Radiat Oncol Biol Phys; 1984 Jul; 10(7):1095-107. PubMed ID: 6746351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature distributions in hyperthermia by electromagnetic induction: a theoretical model for the thorax.
    Brezovich IA; Young JH; Wang MT
    Med Phys; 1983; 10(1):57-65. PubMed ID: 6843514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Power deposition patterns in magnetically-induced hyperthermia: a two-dimensional low-frequency numerical analysis.
    Hill SC; Christensen DA; Durney CH
    Int J Radiat Oncol Biol Phys; 1983 Jun; 9(6):893-904. PubMed ID: 6863062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of uniform heating on the biomechanical properties of the intervertebral disc in a porcine model.
    Wang JC; Kabo JM; Tsou PM; Halevi L; Shamie AN
    Spine J; 2005; 5(1):64-70. PubMed ID: 15653086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radiofrequency capacitive hyperthermia for deep-seated tumors. I. Studies on thermometry.
    Hiraoka M; Jo S; Akuta K; Nishimura Y; Takahashi M; Abe M
    Cancer; 1987 Jul; 60(1):121-7. PubMed ID: 3581026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Considerations of radiofrequency induction heating for localised hyperthermia.
    Hand JW; Ledda JL; Evans NT
    Phys Med Biol; 1982 Jan; 27(1):1-16. PubMed ID: 7071131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion.
    Gowrishankar TR; Stewart DA; Martin GT; Weaver JC
    Biomed Eng Online; 2004 Nov; 3(1):42. PubMed ID: 15548324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arrhenius relationships from the molecule and cell to the clinic.
    Dewey WC
    Int J Hyperthermia; 2009 Feb; 25(1):3-20. PubMed ID: 19219695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of movable inductively heated seeds for the treatment of brain tumors.
    Molloy JA; Ritter RC; Broaddus WC; Grady MS; Howard MA; Quate EG; Gillies GT
    Med Phys; 1991; 18(4):794-803. PubMed ID: 1921889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heating patterns produced by 434 MHz erbotherm UHF 69.
    Paliwal BR; Cardozo C; Jafari F; Hanson J; Caldwell W
    Radiology; 1980 May; 135(2):511-2. PubMed ID: 7367648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperthermia by magnetic induction: II. Clinical experience with concentric electrodes.
    Oleson JR; Heusinkveld RS; Manning MR
    Int J Radiat Oncol Biol Phys; 1983 Apr; 9(4):549-56. PubMed ID: 6853256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved preferential tumor hyperthermia with regional heating and systemic blood cooling: a balanced heat transfer method.
    Oleson JR; Babbs CF; Parks LC
    Radiat Res; 1984 Mar; 97(3):488-98. PubMed ID: 6729025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical temperature distributions produced by an annular phased array-type system in CT-based patient models.
    Paulsen KD; Strohbehn JW; Lynch DR
    Radiat Res; 1984 Dec; 100(3):536-52. PubMed ID: 6505143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prospective treatment planning to improve locoregional hyperthermia for oesophageal cancer.
    Kok HP; van Haaren PM; van de Kamer JB; Zum Vörde Sive Vörding PJ; Wiersma J; Hulshof MC; Geijsen ED; van Lanschot JJ; Crezee J
    Int J Hyperthermia; 2006 Aug; 22(5):375-89. PubMed ID: 16891240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional theoretical temperature distributions produced by 915 MHz dipole antenna arrays with varying insertion depths in muscle tissue.
    Mechling JA; Strohbehn JW; Ryan TP
    Int J Radiat Oncol Biol Phys; 1992; 22(1):131-8. PubMed ID: 1727110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiofrequency diathermy for uniform heating of mouse tumours.
    Joiner MC; Vojnovic B
    Br J Cancer Suppl; 1982 Mar; 5():71-6. PubMed ID: 6950779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.