These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Roles of CO2, O2, and acid in arteriovenous [H+] difference during muscle contractions. Stainsby WN; Eitzman PD J Appl Physiol (1985); 1988 Oct; 65(4):1803-10. PubMed ID: 2846498 [TBL] [Abstract][Full Text] [Related]
6. Pathophysiology of type A hypoxic lactic acidosis in dogs. Arieff AI; Graf H Am J Physiol; 1987 Sep; 253(3 Pt 1):E271-6. PubMed ID: 3631257 [TBL] [Abstract][Full Text] [Related]
7. Plasma catecholamines and their effect on blood lactate and muscle lactate output. Stainsby WN; Sumners C; Andrew GM J Appl Physiol Respir Environ Exerc Physiol; 1984 Aug; 57(2):321-5. PubMed ID: 6469801 [TBL] [Abstract][Full Text] [Related]
8. Hydrogen ion concentration and oxygen uptake in an isolated canine hindlimb. Harken AH J Appl Physiol; 1976 Jan; 40(1):1-5. PubMed ID: 2574 [TBL] [Abstract][Full Text] [Related]
9. Increased [lactate] in working dog muscle reduces tension development independent of pH. Hogan MC; Gladden LB; Kurdak SS; Poole DC Med Sci Sports Exerc; 1995 Mar; 27(3):371-7. PubMed ID: 7752864 [TBL] [Abstract][Full Text] [Related]
10. The influence of lactic acid on adenosine release from skeletal muscle in anaesthetized dogs. Ballard HJ J Physiol; 1991 Feb; 433():95-108. PubMed ID: 1841964 [TBL] [Abstract][Full Text] [Related]
11. Limitation of maximal O2 uptake and performance by acute hypoxia in dog muscle in situ. Hogan MC; Roca J; Wagner PD; West JB J Appl Physiol (1985); 1988 Aug; 65(2):815-21. PubMed ID: 3170431 [TBL] [Abstract][Full Text] [Related]
12. Effect of respiratory alkalosis on skeletal muscle metabolism in the dog. Brice AG; Welch HG J Appl Physiol (1985); 1985 Feb; 58(2):658-64. PubMed ID: 3980368 [TBL] [Abstract][Full Text] [Related]
13. Effects of adrenergic agonists and antagonists on muscle O2 uptake and lactate metabolism. Stainsby WN; Sumners C; Eitzman PD J Appl Physiol (1985); 1987 May; 62(5):1845-51. PubMed ID: 2885302 [TBL] [Abstract][Full Text] [Related]
14. Effect of blood flow on net lactate uptake during steady-level contractions in canine skeletal muscle. Gladden LB; Crawford RE; Webster MJ J Appl Physiol (1985); 1992 May; 72(5):1826-30. PubMed ID: 1601792 [TBL] [Abstract][Full Text] [Related]
15. L-(+)-lactate infusion into working dog gastrocnemius: no evidence lactate per se mediates VO2 slow component. Poole DC; Gladden LB; Kurdak S; Hogan MC J Appl Physiol (1985); 1994 Feb; 76(2):787-92. PubMed ID: 8175590 [TBL] [Abstract][Full Text] [Related]
16. Net uptake of lactate by rabbit hindlimb during hypoxia. Gutierrez G; Hurtado FJ; Gutierrez AM; Fernandez E Am Rev Respir Dis; 1993 Nov; 148(5):1204-9. PubMed ID: 8239154 [TBL] [Abstract][Full Text] [Related]
17. Effects of catecholamines on lactic acid output during progressive working contractions. Stainsby WN; Sumners C; Eitzman PD J Appl Physiol (1985); 1985 Dec; 59(6):1809-14. PubMed ID: 4077789 [TBL] [Abstract][Full Text] [Related]
18. Effect of lactate concentration and metabolic rate on net lactate uptake by canine skeletal muscle. Gladden LB; Crawford RE; Webster MJ Am J Physiol; 1994 Apr; 266(4 Pt 2):R1095-101. PubMed ID: 8184951 [TBL] [Abstract][Full Text] [Related]
19. Effect of altered arterial O2 tensions on muscle metabolism in dog skeletal muscle during fatiguing work. Hogan MC; Welch HG Am J Physiol; 1986 Aug; 251(2 Pt 1):C216-22. PubMed ID: 3740252 [TBL] [Abstract][Full Text] [Related]