These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 6863252)
1. Evidence that the H+ electrochemical gradient across membranes of chromaffin granules is not involved in exocytosis. Holz RW; Senter RA; Sharp RR J Biol Chem; 1983 Jun; 258(12):7506-13. PubMed ID: 6863252 [TBL] [Abstract][Full Text] [Related]
2. Uptake of magnesium by chromaffin granules in vitro: role of the proton electrochemical gradient. Fiedler J; Daniels AJ J Neurochem; 1984 May; 42(5):1291-7. PubMed ID: 6707633 [TBL] [Abstract][Full Text] [Related]
3. Protonmotive force and catecholamine transport in isolated chromaffin granules. Johnson RG; Scarpa A J Biol Chem; 1979 May; 254(10):3750-60. PubMed ID: 438157 [TBL] [Abstract][Full Text] [Related]
4. Biological amine transport in chromaffin ghosts. Coupling to the transmembrane proton and potential gradients. Johnson RG; Pfister D; Carty SE; Scarpa A J Biol Chem; 1979 Nov; 254(21):10963-72. PubMed ID: 40978 [TBL] [Abstract][Full Text] [Related]
5. Evidence that catecholamine transport into chromaffin vesicles is coupled to vesicle membrane potential. Holz RW Proc Natl Acad Sci U S A; 1978 Oct; 75(10):5190-4. PubMed ID: 33385 [TBL] [Abstract][Full Text] [Related]
6. Stoichiometry of H+-linked dopamine transport in chromaffin granule ghosts. Knoth J; Zallakian M; Njus D Biochemistry; 1981 Nov; 20(23):6625-9. PubMed ID: 6458332 [TBL] [Abstract][Full Text] [Related]
7. Role of a transmembrane pH gradient in epinephrine transport by chromaffin granule membrane vesicles. Schuldiner S; Fishkes H; Kanner BI Proc Natl Acad Sci U S A; 1978 Aug; 75(8):3713-6. PubMed ID: 29292 [TBL] [Abstract][Full Text] [Related]
8. Role of intracellular pH in secretion from adrenal medulla chromaffin cells. Kuijpers GA; Rosario LM; Ornberg RL J Biol Chem; 1989 Jan; 264(2):698-705. PubMed ID: 2910860 [TBL] [Abstract][Full Text] [Related]
9. Plasma membrane and chromaffin granule characteristics in digitonin-treated chromaffin cells. Holz RW; Senter RA J Neurochem; 1985 Nov; 45(5):1548-57. PubMed ID: 3876408 [TBL] [Abstract][Full Text] [Related]
10. ATP-driven proton fluxes across membranes of secretory organelles. Cidon S; Ben-David H; Nelson N J Biol Chem; 1983 Oct; 258(19):11684-8. PubMed ID: 6619137 [TBL] [Abstract][Full Text] [Related]
11. Electron transfer across the chromaffin granule membrane. Njus D; Knoth J; Cook C; Kelly PM J Biol Chem; 1983 Jan; 258(1):27-30. PubMed ID: 6294100 [TBL] [Abstract][Full Text] [Related]
12. Protein phosphorylation and the exocytosis-like interaction between isolated adrenal medullary plasma membranes and chromaffin granules. Konings F; De Potter W Biochem Biophys Res Commun; 1983 Jan; 110(1):55-60. PubMed ID: 6687680 [TBL] [Abstract][Full Text] [Related]
13. Uptake of nucleotides and catecholamines by chromaffin granules from pig and horse adrenal medulla. Carmichael SW; Weber A; Winkler H J Neurochem; 1980 Jul; 35(1):270-2. PubMed ID: 7452257 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of ATP by an artificially imposed electrochemical proton gradient in chromaffin granule ghosts. Roisin MP; Scherman D; Henry JP FEBS Lett; 1980 Jun; 115(1):143-7. PubMed ID: 7389914 [No Abstract] [Full Text] [Related]
15. The chromaffin granule proton pump and calcium-dependent exocytosis in bovine adrenal medullary cells. Knight DE; Baker PF J Membr Biol; 1985; 83(1-2):147-56. PubMed ID: 3873539 [TBL] [Abstract][Full Text] [Related]
16. Effects of changes in osmolality on the stability and function of cultured chromaffin cells and the possible role of osmotic forces in exocytosis. Hampton RY; Holz RW J Cell Biol; 1983 Apr; 96(4):1082-8. PubMed ID: 6833392 [TBL] [Abstract][Full Text] [Related]
17. Calcium dependence of the binding of synexin to isolated chromaffin granules. Creutz CE; Sterner DC Biochem Biophys Res Commun; 1983 Jul; 114(1):355-64. PubMed ID: 6224488 [TBL] [Abstract][Full Text] [Related]
18. H+-ATPase and catecholamine transport in chromaffin granules. Beers MF; Carty SE; Johnson RG; Scarpa A Ann N Y Acad Sci; 1982; 402():116-33. PubMed ID: 6220634 [No Abstract] [Full Text] [Related]
19. The use of monoclonal antibodies in the study of the interaction between adrenal medullary cell membranes and chromaffin granules. Bohner K; Boons J; Gheuens J; Konings F; De Potter WP Biochem Biophys Res Commun; 1985 Dec; 133(3):1006-12. PubMed ID: 2417600 [TBL] [Abstract][Full Text] [Related]
20. Active transport of biogenic amines in chromaffin granule membrane vesicles. Schuldiner S; Maron R; Kanner BI Monogr Neural Sci; 1980; 7():117-28. PubMed ID: 6453280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]