These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 6863332)

  • 1. Movement of interstitial water through loaded articular cartilage.
    Torzilli PA; Dethmers DA; Rose DE; Schryuer HF
    J Biomech; 1983; 16(3):169-79. PubMed ID: 6863332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Articular Surface Compression on Cartilage Extracellular Matrix Deformation.
    Torzilli PA; Allen SN
    J Biomech Eng; 2022 Sep; 144(9):. PubMed ID: 35292801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior.
    Setton LA; Zhu W; Mow VC
    J Biomech; 1993; 26(4-5):581-92. PubMed ID: 8478359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sliding enhances fluid and solute transport into buried articular cartilage contacts.
    Graham BT; Moore AC; Burris DL; Price C
    Osteoarthritis Cartilage; 2017 Dec; 25(12):2100-2107. PubMed ID: 28888900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between T1rho magnetic resonance imaging, synovial fluid biomarkers, and the biochemical and biomechanical properties of cartilage.
    Hatcher CC; Collins AT; Kim SY; Michel LC; Mostertz WC; Ziemian SN; Spritzer CE; Guilak F; DeFrate LE; McNulty AL
    J Biomech; 2017 Apr; 55():18-26. PubMed ID: 28237185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycosaminoglycan network geometry may contribute to anisotropic hydraulic permeability in cartilage under compression.
    Quinn TM; Dierickx P; Grodzinsky AJ
    J Biomech; 2001 Nov; 34(11):1483-90. PubMed ID: 11672723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional analysis of articular cartilage deformation, recovery, and fluid flow following dynamic exercise in vivo.
    Eckstein F; Tieschky M; Faber S; Englmeier KH; Reiser M
    Anat Embryol (Berl); 1999 Oct; 200(4):419-24. PubMed ID: 10460479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in pore morphology and fluid transport in compressed articular cartilage and the implications for joint lubrication.
    Greene GW; Zappone B; Zhao B; Söderman O; Topgaard D; Rata G; Israelachvili JN
    Biomaterials; 2008 Nov; 29(33):4455-62. PubMed ID: 18755507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detrimental effects of long sedentary bouts on the biomechanical response of cartilage to sliding.
    Graham BT; Moore AC; Burris DL; Price C
    Connect Tissue Res; 2020; 61(3-4):375-388. PubMed ID: 31910694
    [No Abstract]   [Full Text] [Related]  

  • 10. Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering.
    Mauck RL; Hung CT; Ateshian GA
    J Biomech Eng; 2003 Oct; 125(5):602-14. PubMed ID: 14618919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Equilibrium water partition in articular cartilage.
    Torzilli PA; Rose DE; Dethmers DA
    Biorheology; 1982; 19(4):519-37. PubMed ID: 7126804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression.
    Soltz MA; Ateshian GA
    J Biomech; 1998 Oct; 31(10):927-34. PubMed ID: 9840758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fundamental fluid transport mechanisms through articular cartilage.
    Mow VC; Torzilli PA
    Ann Rheum Dis; 1975 Dec; 34 Suppl 2():Suppl 82-4. PubMed ID: 25330585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors influencing the oxygen concentration gradient from the synovial surface of articular cartilage to the cartilage-bone interface: a modeling study.
    Zhou S; Cui Z; Urban JP
    Arthritis Rheum; 2004 Dec; 50(12):3915-24. PubMed ID: 15593204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of stress rate on water loss, matrix deformation and chondrocyte viability in impacted articular cartilage.
    Milentijevic D; Torzilli PA
    J Biomech; 2005 Mar; 38(3):493-502. PubMed ID: 15652547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient solute diffusion in articular cartilage.
    Torzilli PA; Adams TC; Mis RJ
    J Biomech; 1987; 20(2):203-14. PubMed ID: 2437125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of temperature, concentration and articular surface removal on transient solute diffusion in articular cartilage.
    Torzilli PA
    Med Biol Eng Comput; 1993 Jul; 31 Suppl():S93-8. PubMed ID: 7694012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Creep behavior of the intact and meniscectomy knee joints.
    Kazemi M; Li LP; Savard P; Buschmann MD
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1351-8. PubMed ID: 21783145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Movement of H2O through the pores of articular cartilage under load, with reference to the mechanism of lubrication of the joints].
    Guzzanti V; Masini A
    Arch Putti Chir Organi Mov; 1981; 31():129-37. PubMed ID: 7345993
    [No Abstract]   [Full Text] [Related]  

  • 20. In vivo structural analysis of articular cartilage using diffusion tensor magnetic resonance imaging.
    Azuma T; Nakai R; Takizawa O; Tsutsumi S
    Magn Reson Imaging; 2009 Nov; 27(9):1242-8. PubMed ID: 19553054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.